精英家教网 > 初中数学 > 题目详情
(2012•泰安)如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是(  )
分析:由直径AB垂直于弦CD,利用垂径定理得到M为CD的中点,B为劣弧
CD
的中点,可得出A和B选项成立,再由AM为公共边,一对直角相等,CM=DM,利用SAS可得出三角形ACM与三角形ADM全等,根据全等三角形的对应角相等可得出选项C成立,而OM不一定等于MD,得出选项D不成立.
解答:解:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,
∴M为CD的中点,即CM=DM,选项A成立;
B为
CD
的中点,即
CB
=
DB
,选项B成立;
在△ACM和△ADM中,
AM=AM
∠AMC=∠AMD=90°
CM=DM

∴△ACM≌△ADM(SAS),
∴∠ACD=∠ADC,选项C成立;
而OM与MD不一定相等,选项D不成立.
故选D
点评:此题考查了垂径定理,以及全等三角形的判定与性质,垂径定理为:垂直于弦的直径平分弦,且平分弦所对的弧,熟练掌握垂径定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•泰安)如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泰安)如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=-
3
3
x2+bx+c过A、B两点.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;
(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泰安)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则
BC
的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泰安)如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是(  )

查看答案和解析>>

同步练习册答案