精英家教网 > 初中数学 > 题目详情

【题目】某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:

(1)这次活动一共调查了名学生;
(2)补全条形统计图;
(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于度;
(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是人.

【答案】
(1)250
(2)


(3)108
(4)480
【解析】解:(1)这次活动一共调查学生:80÷32%=250(人);(2)选择“篮球”的人数为:250﹣80﹣40﹣55=75(人),
补全条形图如图:
;(3)选择篮球项目的人数所在扇形的圆心角为: ×360°=108°;(4)估计该学校选择足球项目的学生人数约是:1500×32%=480(人);
故答案为:(1)250;(3)108;(4)480.
(1)由“足球”人数及其百分比可得总人数;(2)根据各项目人数之和等于总人数求出“篮球”的人数,补全图形即可;(3)用“篮球”人数占被调查人数的比例乘以360°即可;(4)用总人数乘以样本中足球所占百分比即可得.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】张先生准备在沙坪坝购买一套小户型商品房,他去某楼盘了解情况得知该户型商品房的单价是12000/m2,面积如图所示(单位:米,卧室的宽为a米,卫生间的宽为x米),

(1) 用含ax的式子表示该户型的面积

(2) 售房部为张先生提供了以下两种优惠方案:

方案一:整套房的单价是12 000/m2,其中厨房只算的面积;

方案二:整套房按原销售总金额的9折出售,

若张先生购买的户型a=3,且分别用两种方案购房金额相等,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC 中,AB=AC,C=70°,AB′C′ABC 关于直线 EF对称,∠CAF=10°,连接 BB′,则∠ABB′的度数是(

A. 30° B. 35° C. 40° D. 45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为( )

A.7
B.8
C.9
D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,lAlB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.

1B出发时与A相距______千米.

2B走了一段路后,自行车发生故障,进行修理,所用的时间是______小时.

3B出发后______小时与A相遇.

4)若B的自行车不发生故障,保持出发时的速度前进,______小时与A相遇,相遇点离B的出发点______千米.在图中表示出这个相遇点C

5)求出A行走的路程S与时间t的函数关系式。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们可以将任意三位数表示为(其中a、b、c 分别表示百位上的数字,十位上的数字和个位上的数字,且a0)显然,= 100a+10b+c;我们把形如的两个三位数称为一对姊妹数(其中x、y、z是三个连续的自然数)如:123321是一对姊妹数”,789987是一对姊妹数”.

(1)一对姊妹数的和为1110,求这对姊妹数”.

(2)如果用x表示百位数字,试说明:任意一对姊妹数的和能被37整除.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是(  )
A.线段DB绕点D顺时针旋转一定能与线段DC重合
B.线段DB绕点D顺时针旋转一定能与线段DI重合
C.∠CAD绕点A顺时针旋转一定能与∠DAB重合
D.线段ID绕点I顺时针旋转一定能与线段IB重合

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点Aa0)和B0b)满足,分别过点ABx轴、y轴的垂线交于点C,如图,点P从原点出发,以每秒2个单位长度的速度沿着O-B-C-A-O的路线移动.

1)写出ABC三点的坐标;

2)当点P移动了6秒时,描出此时P点的位置,并写出点P的位置坐标;

3)连结(2)中BP两点,将线段BP向下平移h个单位(h0),得到BP′,若BP′将四边形OACB的周长分成相等的两部分,求h的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE.
(1)直接写出AE与BC的位置关系;
(2)求证:△BCG∽△ACE;
(3)若∠F=60°,GF=1,求⊙O的半径长.

查看答案和解析>>

同步练习册答案