精英家教网 > 初中数学 > 题目详情
设x1、x2是关于x的一元二次方程x2+ax+a=2的两个实数根,则(x1-2x2)(x2-2x1)的最大值为   
【答案】分析:x1、x2是关于x的一元二次方程x2+ax+a=2的两个实数根,根据根与系数的关系,表示出a的二次函数的形式,然后求解.
解答:解:∵△=a2-4(a-2)=a2-4a+8=(a-2)2+4>0,
∴对于任意实数a,原方程总有两个实数根.
由根与系数的关系得:x1+x2=-a,x1x2=a-2,
∴(x1-2x2)(x2-2x1)=-2(x1+x22+9x1x2
=-2a2+9a-18,
=-2(a-2-
∴当a=时,原式有最大值-
故答案为:-
点评:本题考查了根与系数的关系及根的判别式,难度不大,关键是熟记x1,x2是方程x2+px+q=0的两根时,x1+x2=-p,x1x2=q,反过来可得p=-(x1+x2),q=x1x2
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、设x1、x2是关于x的一元二次方程x2+ax+a+3=0的两个实数根,则x12+x22的最小值为
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

设x1、x2是关于x的一元二次方程x2+ax+a=2的两个实数根,则(x1-2x2)(x2-2x1)的最大值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

设x1,x2是关于x的一元二次方程x2+x+n-2=mx的两个实数根,且x1<0,x2-3x1<0,则(  )
A、
m>1
n>2
B、
m>1
n<2
C、
m<1
n>2
D、
m<1
n<2

查看答案和解析>>

科目:初中数学 来源: 题型:

设x1,x2是关于x的一元二次方程x2+2ax+a2+4a-2=0的两实根,当a为何值时,x12+x22有最小值?最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

22、设x1、x2是关于x的方程x2-4x+k+1=0的两个实数根.问:是否存在实数k,使得3x1•x2-x1>x2成立,请说明理由.

查看答案和解析>>

同步练习册答案