精英家教网 > 初中数学 > 题目详情
已知关于x的二次函数y=x2-(2m-1)x+m2
(1)m满足什么条件时,二次函数的图象与x轴有两个交点?
(2)设二次函数的图象与x轴的交点为A(x1,0),B(x2,0),且
x
2
1
+
x
2
2
=5
,它的顶点为M,求顶点M的坐标.
分析:(1)当二次函数与x轴有两个交点,则有相关一元二次方程△>0,解不等式即可求出m的取值范围;
(2)将
x
2
1
+
x
2
2
=5
配方,结合根与系数的关系,列出关于m的方程,求出m的值,得到二次函数的解析式,从而求出其顶点坐标.
解答:解:(1)∵二次函数的图象与x轴有两个交点,则△>0,即[-(2m-1)2-4m2]>0,
解得m<
1
4


(2)∵且
x
2
1
+
x
2
2
=5

∴(x1+x22-2x1x2=5,
∴(2m-1)2-2m2=5,
解得m1=1+
3
(大于
1
4
,舍去);m2=1-
3

则函数解析式为y=x2-(1-2
3
)x+4-2
3

则其顶点坐标为(
1-2
3
2
3-4
3
4
).
点评:本题考查了抛物线与x轴的交点及一元二次方程根与系数的关系,将函数问题转化为方程问题是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)
(1)求c的值;
(2)求a的取值范围;
(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1-S2为常数,并求出该常数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的二次函数y1和y2,其中y1的图象开口向下,与x轴交于点A(-2,0)和点B(4,0),对称轴平行于y轴,其顶点M与点B的距离为5,而y2=-
4
9
x2-
16
9
x+
2
9

(I)求二次函数y1的解析式;
(II)把y2化为y2=a(x-h)2+k的形式;
(III)将y1的图象经过怎样的平移能得到y2的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河东区二模)已知关于x的二次函数同时满足下列两个条件:①函数的图象过原点;②顶点在第一象限,你认为符合要求的二次函数的解析式可以是:
y=-x2+x(答案不唯一)
y=-x2+x(答案不唯一)
(写出一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的二次函数y=mx2-(2m-6)x+m-2.
(1)若该函数的图象与y轴的交点坐标是(0,3),求m的值;
(2)若该函数图象的对称轴是直线x=2,求m的值.

查看答案和解析>>

同步练习册答案