精英家教网 > 初中数学 > 题目详情

【题目】如图,在长方形ABCD中,把△BCD沿对角线BD折叠得到△BED,线段BE与AD相交于点P,若AB=2,BC=4.

(1)BD=
(2)点P到BD的距离是

【答案】
(1) (或2
(2) (或
【解析】解:(1)∵四边形ABCD是长方形,
∴∠C=90°,
∴BD= = =2
故答案为2
2)在△APB与△DEP中,

∴△APB≌△DEP,
∴AP=EP,
设AP=x,可知EP=x,PD=4﹣x,
∴在Rt△PED中,
x2+22=(4﹣x)2
解得x=
即AP=
∴PD=4﹣ =
∴△BDP的面积= × ×2= ×2 点P到BD的距离,
∴点P到BD的距离=
故答案为
(1)由勾股定理直接得出;(2)设AP=x,证出△ABP≌△EDP,可知EP=x,PD=8﹣x,根据翻折不变性,可知ED=DC=AB=2,然后在Rt△PED中,利用勾股定理求出x,再由三角形的面积即可求出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系xOy中,一次函数y=kx+2的图象与y轴交于点A,与x轴的正半轴交于点B,OA=2OB.
(1)直接写出点A、点B的坐标;
(2)在所给平面直角坐标系内画一次函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)如图①,△ABC中,点D、E在边BC上,AE平分∠BAC,AD⊥BC,∠C=40°,∠B=60°,求:①∠CAE的度数;②∠DAE的度数.
(2)如图②,若把(1)中的条件“AD⊥BC”变成“F为AE延长线上一点,且FD⊥BC”,其他条件不变,求出∠DFE的度数.
(3)在△ABC中,AE平分∠BAC,若F为EA延长线上一点,FD⊥BC,且∠C=α,∠B=β(β>α),试猜想∠DFE的度数(用α,β表示),请自己作出对应图形并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若两圆的半径分别是2和3,圆心距是5,则这两圆的位置关系是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的方程x24xm0有两个相等的实数根,则m的值是(

A.1B.2C.4D.±4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,现有一张三角形ABC纸片,沿BC边上的高AE所在的直线翻折,使得点C与BC边上的点D重合.

(1)填空:△ADC是三角形;
(2)若AB=15,AC=13,BC=14,求BC边上的高AE的长;
(3)如图②,若∠DAC=90°,试猜想:BC、BD、AE之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.

(1)求证:AEH∽△ABC;

(2)求这个正方形的边长与面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:
(1)已知a+b=2,ab=2,求a3b+2a2b2+ab3的值.
(2)求(2x﹣y)(2x+y)﹣(2y+x)(2y﹣x)的值,其中x=2,y=1.

查看答案和解析>>

同步练习册答案