精英家教网 > 初中数学 > 题目详情
(2012•百色)如图,在矩形ABCD中,AB=6cm,BC=4cm.动点E从点B出发,沿着线路BC→CD→DA运动,在BC段的平均速度是1cm/s,在CD段的平均速度是2cm/s,在DA段的平均速度是4cm/s,到点A停止.设△ABE的面积为y(cm2),则y与点E的运动时间t(s)的函数关系图象大致是(  )
分析:求△ABE的面积y时,可把AB看作底边,E到AB的垂线段看作高.分三种情况:①动点E从点B出发,在BC上运动;②动点E在CD上运动;③动点E在DA上运动.分别求出每一种情况下,△ABE的面积y(cm2)点E的运动时间t(s)的函数解析式,再结合自变量的取值范围即可判断.
解答:解:分三种情况:
①动点E从点B出发,在BC上运动.
∵BC=4cm,动点E在BC段的平均速度是1cm/s,
∴动点E在BC段的运动时间为:4÷1=4(s).
∵y=
1
2
•AB•BE=
1
2
×6×t=3t,
∴y=3t(0≤t≤4),
∴当0≤t≤4时,y随t的增大而增大,故排除A、B;
②动点E在CD上运动.
∵CD=AB=6cm,动点E在CD段的平均速度是2cm/s,
∴动点E在CD段的运动时间为:6÷2=3(s).
∵y=
1
2
•AB•BC=
1
2
×6×4=12,
∴y=12(4<t≤7),
∴当4<t≤7时,y=12;
③动点E在DA上运动.
∵DA=BC=4cm,动点E在DA段的平均速度是4cm/s,
∴动点E在DA段的运动时间为:4÷4=1(s).
∵y=
1
2
•AB•AE=
1
2
×6×[4-4(t-7)]=96-12t,
∴y=96-12t(7<t≤8),
∴当7<t≤8时,y随t的增大而减小,故排除D.
综上可知C选项正确.
故选C.
点评:本题考查动点问题的函数图象,根据时间=路程÷速度确定动点E分别在BC、CD、DA段运动的时间是解题的关键,同时考查了三角形的面积公式及一次函数的性质,进行分类讨论是解决此类问题常用的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•百色)如图,Rt△OA1B1是由Rt△OAB绕点O顺时针方向旋转得到的,且A、O、B1三点共线.如果∠OAB=90°,∠AOB=30°,OA=
3
.则图中阴影部分的面积为
5
3
π-
3
2
5
3
π-
3
2
.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•百色)如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.
(1)求抛物线的解析式;
(2)连接BE,求h为何值时,△BDE的面积最大;
(3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•百色)如图,在平面直角坐标系中,等腰梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上,且A(-4,0),B(6,0),D(0,3).
(1)写出点C的坐标,并求出经过点C的反比例函数解析式和直线BC的解析式;
(2)若点E是BC的中点,请说明经过点C的反比例函数图象也经过点E.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•百色)如图,△ABC内接于⊙O,AB是直径,直线l是经过点C的切线,BD⊥l,垂足为D,且AC=8,sin∠ABC=
45

(1)求证:BC平分∠ABD;
(2)过点A作直线l的垂线,垂足为E(要求:用尺规作图,保留作图痕迹,不写作法、证明),并求出四边形ABDE的周长.

查看答案和解析>>

同步练习册答案