精英家教网 > 初中数学 > 题目详情
18.如图,在平面直角坐标系中,已知点A(10,0),B(4,8),C(0,8),连接AB,BC,点P在x轴上,从原点O出发,以每秒1个单位长度的速度向点A运动,同时点M从点A出发,以每秒2个单位长度的速度沿折线A-B-C向点C运动,其中一点到达终点时,另一点也随之停止运动,设P,M两点运动的时间为t秒.
(1)求AB长;
(2)设△PAM的面积为S,当0≤t≤5时,求S与t的函数关系式,并指出S取最大值时,点P的位置;
(3)t为何值时,△APM为直角三角形?

分析 (1)过点B作BD⊥x轴于点D,利用勾股定理求出AB的长度;
(2)先判断出点M在AB上,然后表示出PA,ME即可用三角形的面积公式即可;
(3)△APM为直角三角形时,由于没有规定哪个顶点是直角顶点,所以分三种情况进行讨论;利用锐角三角函数或相似三角形的性质即可.

解答 解:(1)如图1,过点B作BD⊥x轴于点D,
∵A(10,0),B(4,8)C(0,8),
∴AO=10,BD=8,AD=6,
由勾股定理可求得:AB=10,
(2)∵AB=10,
∴10÷2=5,
∵0≤t≤5,
∴点M在AB上,
作ME⊥OA于E,
∴△AEM∽△ADB,
∴$\frac{ME}{BD}=\frac{AM}{AB}$,
∴$\frac{ME}{8}=\frac{2t}{10}$,
∴ME=$\frac{8}{5}$t,
∴S=$\frac{1}{2}$PA•ME=$\frac{1}{2}$(10-t)$•\frac{8}{5}t$=-$\frac{4}{5}{t}^{2}+8t$=-$\frac{4}{5}$(t-5)2+20,
∵0≤t≤5,
∴t=5时,S取最大值,此时PA=10-t=5,
即:点P在OA的中点处.
(3)由题意可知:0≤t≤7,
当点P是直角顶点时,
∴PM⊥AP,
∴PA=10-t,
若0≤t≤5时,点M在AB上,如图2,
此时AM=2t,
∵cos∠BAO=$\frac{3}{5}$,
∴$\frac{AP}{AM}$=$\frac{3}{5}$,
∴$\frac{10-t}{2t}=\frac{3}{5}$
∴t=$\frac{50}{11}$,
若5<t≤7时,点M在BC上,如图3,
∴CM=14-2t,OP=t,
∴OP=CM,
∴t=14-2t,
∴t=$\frac{14}{3}$,
当点A是直角顶点时,
此时,∠MAP不可能为90°,此情况不符合题意;
当点M是直角顶点时,
若0≤t≤5时,M在AB上,如图4,
此时,AM=2t,AP=10-t
∵cos∠BAO=$\frac{3}{5}$,
∴$\frac{AM}{AP}=\frac{3}{5}$,
∴$\frac{2t}{10-t}=\frac{3}{5}$,
∴t=$\frac{30}{13}$,
若5<t≤7时,点M在BC上,如图5,
过点M作ME⊥x轴于点E,
此时,CM=14-2t,OP=t,
∴ME=8,PE=CM-OP=14-3t,
∴EA=10-(14-2t)=2t-4,
∵∠PMA=∠MEA=90°,
∴∠PME+∠EMA=∠EMA+∠MAP=90°,
∴∠PME=∠MAP,
∴△PME∽△MAE,
∴$\frac{ME}{PE}=\frac{EA}{ME}$,
∴ME2=PE•EA,
∴64=(14-3t)(2t-4),
∴3t2-8t+60=0,
△=-656<0,故此情况不存在;
综上所述,t=$\frac{50}{11}$或$\frac{30}{13}$;

点评 此题是三角形的综合问题,涉及平行四边形的判定与性质,相似三角形的判定与性质,锐角三角函数,三角形的面积公式,解方程等知识,画出图形是解本题的关键,综合程度较高.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=$\frac{k}{x}$(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.
(1)求k的值及点E的坐标;
(2)若点F是边上一点,且△BCF∽△EBD,求直线FB的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长(  )
A.1500米B.1575米C.2000米D.2075米

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知,如图所示,在平面直角坐标系中,Rt△OAB的直角顶点A在反比例函数y=$\frac{4\sqrt{3}}{x}$(x>0)图象上,∠AOB=30°,顶点B在x轴上,求此△OAB顶点A的坐标和△OAB面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.n边形的n个内角与某一个外角的和为1300°,求n的值及这个外角的度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,求∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在争创全国卫生城市的活动中,我区“义工队”义务清运一堆重达100吨的垃圾,清运了25吨后因附近居民主动参与到义务劳动中,使清运的速度比原来提高了一倍,前后共用5小时就完成清运,请你求出义工队原计划每小时清运多少吨垃圾?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在△ABC中,∠ACB=90°,经过点B的直线l(不与直线AB重合)与直线BC的夹角∠DBC=∠ABC,分别过点C、A作直线l的垂线,垂足分别为点D、E.
(1)问题发现
①若∠ABC=30°,如图①,则$\frac{CD}{AE}$=$\frac{1}{2}$;②若∠ABC=45°,如图②,则$\frac{CD}{AE}$=$\frac{1}{2}$.
(2)拓展探究
当0°<∠ABC∠90°,$\frac{CD}{AE}$的值由有无变化?请仅就图③的情形给出证明.
(3)问题解决
随着△ABC的位置旋转,若直线CE、AB交于点F,且$\frac{CF}{EF}$=$\frac{5}{6}$,CD=4,请直接写出线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.
(1)求证:AD∥CG;
(2)求证:△ACF≌△CBG;
(3)若CF=12,求DE的长.

查看答案和解析>>

同步练习册答案