精英家教网 > 初中数学 > 题目详情

【题目】如图,已知在△ABC中,AB=AC,D△ABC外接圆劣弧AC上的点(不与A,C重合),延长BDE.

(1)求证:AD的延长线平分∠CDE;

(2)若∠BAC=30°,且△ABC底边BC边上高为1,求△ABC外接圆的周长.

【答案】(1)证明见解析;(2)4(2-)π.

【解析】

(1)要证明AD的延长线平分∠CDE,即证明∠EDF=CDF,转化为证明∠ADB=CDF,再根据A,B,C,D四点共圆的性质,和等腰三角形角之间的关系即可得到.

(2)求ABC外接圆的面积,只需解出圆半径,故作等腰三角形底边上的垂直平分线即过圆心,再连接OC,根据角之间的关系在三角形内即可求得圆半径,可得到外接圆面积.

(1)证明:如图,设FAD延长线上一点,

A,B,C,D四点共圆,

∴∠CDF=ABC,

AB=AC,

∴∠ABC=ACB,

∵∠ADB=ACB,

∴∠ADB=CDF,

∵∠ADB=EDF(对顶角相等),

∴∠EDF=CDF,

AD的延长线平分∠CDE.

(2)设O为外接圆圆心,连接AO比延长交BCH,连接OC,

AB=AC,

AHBC,

∴∠OAC=OAB=BAC=×30°=15°,

∴∠COH=2OAC=30°

设圆半径为r,

OH=OCcos30°=r,

∵△ABCBC边上的高为1,

AH=OA+OH=r+r=1,

解得:r=2(2-),

∴△ABC的外接圆的周长为:4(2-)π.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线甲:y=﹣2x2﹣1和抛物线乙的形状相同,且两条抛物线的对称轴均为y轴,两点距离5个单位长度,它们的图象如图所示,则抛物线乙的解析式为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△CEF均为等腰直角三角形,E在△ABC内,∠CAE+∠CBE=90°,连接BF.

  (1)求证:△CAE∽△CBF

(2)若BE=1,AE=2,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1cm,AB=3cm,BC=5cm,动点P从点B出发以1cm/s的速度沿BC的方向运动,动点Q从点C出发以2cm/s的速度沿CD方向运动,P、Q两点同时出发,当Q到达点D时停止运动,点P也随之停止,设运动的时间为ts(t>0)

(1)求线段CD的长;

(2)t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 x轴交于点A10),顶点坐标(1n),与y轴的交点在(03),(04)之间(包含端点),则下列结论:abc03a+b0③﹣a1a+bam2+bmm为任意实数);一元二次方程 有两个不相等的实数根,其中正确的有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰△ABCAB=BC,以BC为直径的⊙OAC相交于点D,过点DDEABCB延长线于点E,垂足为点F.

(1)判断DE与⊙O的位置关系,并说明理由;

2)若⊙O的半径R=5,且tanC =,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC△CDE均为等腰直角三角形,点BCD在一条直线上,点MAE的中点,下列结论:①tan∠AEC=②SABC+SCDE≧SACE③BM⊥DM④BM=DM,正确结论的个数是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:

①∠EBG=45°; ②△DEF∽△ABG;

③S△ABG=S△FGH; ④AG+DF=FG.

其中正确的是_____.(填写正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,已知ABAD2BC3CD1,∠A90°.

1)求BD的长;

2)求∠ADC的度数.

查看答案和解析>>

同步练习册答案