分析 先根据矩形的性质得AD∥BC,则∠BFE=∠DEF=α,根据折叠的性质,把如图1中的方形纸袋沿EF折叠成图2,则∠MEF=α,把图2沿BF折叠成图3,则∠MFH=∠CFM,根据平行线的性质由FH∥MG得到∠MFH=180°-∠FMG,再利用三角形外角性质得∠FMG=∠MFE+∠MEF=2α,则∠MFH=180°-2α,所以∠CFM=180°-2α,然后利用∠CFE=∠CFM-∠EFM求解.
解答 解:在图1中,
∵四边形ABCD为矩形,
∴AD∥BC,
∴∠BFE=∠DEF=α,
∵如图1中的方形纸袋沿EF折叠成图2,
∴∠MEF=α,
∵图2再沿BF折叠成图3,
∴在图3中,∠MFH=∠CFM,
∵FH∥MG,
∴∠MFH=180°-∠FMG,
∵∠FMG=∠MFE+∠MEF=α+α=2α,
∴∠MFH=180°-2α,
∴∠CFM=180°-2α,
∴∠CFE=∠CFM-∠EFM=180°-2α-α=180°-3α.
故答案为:180°-3α.
点评 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质.
科目:初中数学 来源: 题型:选择题
A. | x-1 | B. | x+1 | C. | $\frac{x-1}{x}$ | D. | $\frac{x}{x-1}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 直线AB与直线BC的夹角为35° | B. | 直线AC与直线AD的夹角为55° | ||
C. | 点C到直线AD的距离是线段CD的长 | D. | 点B到直线AC的距离是线段AB的长 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①③④ | B. | ②③ | C. | ①④ | D. | ①②③④ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{12}{5}$ | B. | $\sqrt{2}$+1 | C. | $\frac{5}{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com