精英家教网 > 初中数学 > 题目详情

如图,直线y=x+1与y轴交于A点,与反比列函数y=(x>0)的图象交于点M,过M作MH⊥x,且tan∠AHO=
(1)求k的值;
(2)设点N(1,a)是反比例函数y=(x>0)图像上的点,在y轴上是否存在点P,使得PM+PN最小,若存在,求出点P的坐标;若不存在,请说明理由.

(1)6;(2)(0,5).

解析试题分析:(1)对于直线y=x+1,令x=0求出y的值,确定出A坐标,得到OA的长,根据tan∠AHO的值,利用锐角三角函数定义求出OH的长,根据MH垂直于x轴,得到M横坐标与A横坐标相同,再由M在直线y=x+1上,确定出M坐标,代入反比例解析式求出k的值即可;
(2)将N坐标代入反比例解析式求出a的值,确定出N坐标,过N作N关于y轴的对称点N1,连接MN1,交y轴于P(如图),此时PM+PN最小,由N与N1关于y轴的对称,根据N坐标求出N1坐标,设直线MN1的解析式为y=kx+b,把M,N1的坐标代入求出k与b的值,确定出直线MN1的解析式,令x=0求出y的值,即可确定出P坐标.
(1)由y=x+1可得A(0,1),即OA=1,
∵tan∠AHO=
∴OH=2,
∵MH⊥x轴,
∴点M的横坐标为2,
∵点M在直线y=x+1上,
∴点M的纵坐标为3,即M(2,3),
∵点M在上,
∴k=2×3=6;
(2)∵点N(1,a)在反比例函数的图象上,
∴a=6,即点N的坐标为(1,6),
过N作N关于y轴的对称点N1,连接MN1,交y轴于P(如图),

此时PM+PN最小,
∵N与N1关于y轴的对称,N点坐标为(1,6),
∴N1的坐标为(-1,6),
设直线MN1的解析式为y=kx+b,
把M,N1的坐标得

解得:

∴直线MN1的解析式为y=-x+5,
令x=0,得y=5,
∴P点坐标为(0,5).
考点:反比例函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

设有反比例函数,(x1,y1),(x2,y2)为其图象上两点,若x1<0<x2,y1>y2,则k的取值范围   

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知双曲线经过点(2,3),如果A(a1,b1),B(a2,b2)两点在该双曲线上,且a1<0<a2,那么b1     b2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知成反比例,成正比例,并且当时,,当时,
(1)求关于的函数关系式;(6分)
(2)当时,求的值.(4分)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,直线l与x轴相交于点M,与y轴相交于点N,Rt△MON的外心为点A(,﹣2),反比例函数y=(x>0)的图象过点A.
(1)求直线l的解析式;
(2)在函数y=(x>0)的图象上取异于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P.若△ONP的面积是△OBC面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y ℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系,已知当第12分钟时, 材料温度是14℃.
(1)分别求出该材料加热和停止加热过程中y与x的函数关系式(写出x的取值范围);
(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知y=y1-y2,其中y1是x的反比例函数,y2是x2的正比例函数,且x=1时y=3,x=-2时y=-15.
求:(1)y与x之间的函数关系式;
(2)当x=2时y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)先求解下列两题:

①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;
②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数 (x>0)的图象经过点B,D,求k的值.
(2)解题后,你发现以上两小题有什么共同点?请简单地写出.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数的图象与x轴,y轴分别相交于A,B两点,且与反比例函数的图象在第二象限交与点C,如果点A为的坐标为(2,0),B是AC的中点.

(1)求点C的坐标;
(2)求一次函数的解析式.

查看答案和解析>>

同步练习册答案