【题目】已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.
(1)求从袋中随机摸出一个球是红球的概率.
(2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.
(3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.
【答案】(1);(2)
;(3)袋中有3个红球被换成了黄球.
【解析】
(1)直接利用概率公式计算可得;
(2)先列表得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得;
(3)设有x个红球被换成了黄球,根据颜色是一白一黄的概率为列出关于x的方程,解之可得.
(1)∵袋中共有7个小球,其中红球有5个,
∴从袋中随机摸出一个球是红球的概率为;
(2)列表如下:
白 | 白 | 红 | 红 | 红 | 红 | 红 | |
白 | (白,白) | (白,白) | (白,红) | (白,红) | (白,红) | (白,红) | (白,红) |
白 | (白,白) | (白,白) | (白,红) | (白,红) | (白,红) | (白,红) | (白,红) |
红 | (白,红) | (白,红) | (红,红) | (红,红) | (红,红) | (红,红) | (红,红)/span> |
红 | (白,红) | (白,红) | (红,红) | (红,红) | (红,红) | (红,红) | (红,红) |
红 | (白,红) | (白,红) | (红,红) | (红,红) | (红,红) | (红,红) | (红,红) |
红 | (白,红) | (白,红) | (红,红) | (红,红) | (红,红) | (红,红) | (红,红) |
红 | (白,红) | (白,红) | (红,红) | (红,红) | (红,红) | (红,红) | (红,红) |
由表知共有49种等可能结果,其中两次摸出的球恰好颜色不同的有20种结果,
∴两次摸出的球恰好颜色不同的概率为
(3)设有x个红球被换成了黄球.
根据题意,得:,
解得:x=3,
即袋中有3个红球被换成了黄球.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=3,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=
CE;④S阴影=
.其中正确的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程.
已知:△ABC.
求作:在BC边上求作一点P,使得△PAC∽△ABC.
作法:如图,
①作线段AC的垂直平分线GH;
②作线段AB的垂直平分线EF,交GH于点O;
③以点O为圆心,以OA为半径作圆;
④以点C为圆心,CA为半径画弧,交⊙O于点D(与点A不重合);
⑤连接线段AD交BC于点P.
所以点P就是所求作的点.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵CD=AC,
∴= .
∴∠ =∠ .
又∵∠ =∠ ,
∴△PAC∽△ABC( )(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.
(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?
(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.
(1)求证:△COM∽△CBA;
(2)求线段OM的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=4,P是BC边上一动点(不与B,C重合),DE⊥AP于E.
(1)试说明△ADE∽△PAB;
(2)若PA=x,DE=y,请写出y与x之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点.
(1)利用图中的条件,求反比例函数和一次函数的解析式.
(2)求△AOB的面积.
(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,∠ACD=∠B,那么下列判断中,不正确的是( )
A. △ADE∽△ABC B. △CDE∽△BCD C. △ADE∽△ACD D. △ADE∽△DBC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.若四边形ABCD为正方形.
①如图1,请直接写出AE与DF的数量关系 ;
②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com