精英家教网 > 初中数学 > 题目详情
如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,则BD的长为
4cm
4cm
分析:连接AD,根据等腰三角形的两底角相等求出∠B=∠C=30°,再根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出∠CAD=30°,再求出∠BAD=90°,然后根据30°角所对的直角边等于斜边的一半求出CD=2DE,BD=2AD,代入数据进行计算即可得解.
解答:解:连接AD,∵等腰△ABC,∠BAC=120°,
∴∠B=∠C=30°,
∵DE是AC的垂直平分线,
∴AD=CD,
∴∠CAD=∠C=30°,
∴∠BAD=∠BAC-∠CAD=120°-30°=90°,
在Rt△CDE中,CD=2DE,
在Rt△ABD中,BD=2AD,
∴BD=4DE,
∵DE=1cm,
∴BD的长为4cm.
故答案为:4cm.
点评:本题考查了等腰三角形的在,直角三角形30°角所对的直角边等于斜边的一半的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等腰△ABC中,AB=AC,BE⊥AC,垂足为E,则∠1与∠A的关系式为(  )
A、∠1=∠A
B、∠1=
1
2
∠A
C、∠1=2∠A
D、无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰△ABC中,AB=AC,AB的垂直平分线DE交AB于点D,交另一腰AC于点E,若∠EBC=15°,则∠A=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,在等腰△ABC中,AB=AC,∠ABC=α,在四边形BDEC中,DB=DE,∠BDE=2α,M为CE的中点,连接AM,DM.
(1)在图中画出△DEM关于点M成中心对称的图形;
(2)求证AM⊥DM;
(3)当α=
45°
,AM=DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丽水)如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是
50°
50°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰△ABC中,AB=AC=10cm,直线DE垂直平分AB,分别交AB、AC于D、E两点.若BC=8cm,则△BCE的周长是
18
18
cm.

查看答案和解析>>

同步练习册答案