精英家教网 > 初中数学 > 题目详情

对角线为1的正方形的边长是________.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

电焊工想利用一块边长为a的正方形钢板ABCD做成一个扇形,于是设计了以下三种方案:
方案一:如图1,直接从钢板上割下扇形ABC.
方案二:如图2,先在钢板上沿对角线割下两个扇形,再焊接成一个大扇形(如图3).
方案三:如图3,先把钢板分成两个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将四个小扇形按与图3类似的方法焊接成一个大扇形.
精英家教网
试回答下列问题:
(1)容易得出图1、图3中所得扇形的圆心角均为90°,那么按方案三所焊接成的大扇形的圆心角也为90°吗?为什么?
(2)容易得出图1中扇形与图3中所得大扇形的面积相等,那么按方案三所焊成的大扇形的面积也与方案二所焊接成的大扇形的面积相等吗?若不相等,面积是增大还是减小?为什么?
(3)若将正方形钢板按类似图4的方式割成n个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将这2n个小扇形按类似方案三的方式焊接成一个大扇形,则当n逐渐增大时,所焊接成的大扇形的面积如何变化?

查看答案和解析>>

科目:初中数学 来源: 题型:

操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.
探究:设A、P两点间的距离为x.
(1)点Q在CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论(如图1);
(2)点Q边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域(如图2);
(3)点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由(如图3).(图4、图5、图6的形状、大小相同,图4供操作、实验用,图5和图6备用).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,小明想剪一块面积为25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?
精英家教网
(2)若小明想将两块边长都为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:现有5个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.
要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.
小东同学的做法是:设新正方形的边长为x(x>0).依题意,割补前后图形面积相等,有x2=5,解得x=
5
.由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图2所示的分割线,拼出如图3所示的新正方形.
精英家教网
请你参考小东同学的做法,解决如下问题:
(1)如图4,是由边长为1的5个小正方形组成,请你通过分割,把它拼成一个正方形(在图4上画出分割线,在图4的右侧画出拼成的正方形简图);
(2)如图5,是由边长分别为a和b的两个正方形组成,请你通过分割,把它拼成一个正方形(在图5上画出分割线,在图5的右侧画出拼成的正方形简图).
精英家教网

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 华师大八年级版 2009-2010学年 第2期 总第158期 华师大版 题型:044

请阅读下面材料:

问题:现有5个边长为1的正方形,排列形式如图1所示,请把它们分割后拼接成一个新的正方形.要求:画出分割线,并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形

小东同学的做法是:设新正方形的边长为x(x>0).依题意,割补前后图形的面积相等,有x2=5.解得x=.由此可知,新正方形的边长等于两个小正方形组成的矩形的对角线的长.于是,画出如图2所示的分割线,拼出如图3所示的新正方形

请你参考小东同学的做法,解决如下问题:

现有10个边长为1的正方形,排列形式如图4所示,请把它们分割后拼接成一个新的正方形.要求:在图4中画出分割线,并在图5的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形

查看答案和解析>>

同步练习册答案