精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,∠A=90°,tanB=
3
4
,点P在线段AB上运动,点Q、R分别在线段BC,AC上,且使得四边形APQR是矩形.设AP的长是x,矩形APQR面积为y,已知y是x的函数,其图象是过点(12,36)的抛物线上的一部分.
(1)求AB的长;
(2)当AP为何值时,矩形APQR的面积最大,并求出最大值.
(1)∵tanB=
3
4

AC
AB
=
3
4

∵矩形APQR中ABQR,
∴∠RQC=∠B,
∴tan∠RQC=tanB=
3
4

RC
QR
=
3
4

则RC=
3
4
x,AR=AC-
3
4
x,
则y=x(AC-
3
4
x
),把(12,36)代入得:12(AC-
3
4
×12)=36,
解得:AC=12,
则AB=16;

(2)函数的解析式是:y=-
3
4
x2+12x,
则当x=
12
3
2
=8时,函数值最大,最大值是:-
3
4
×82+12×8=48.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象如图所示.
(1)求二次函数的解析式及抛物线顶点M的坐标;
(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t的取值范围;
(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;
(4)将△OAC补成矩形,使上△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知抛物线y=ax2+bx-2经过(2,1)和(6,-5)两点.
(1)求抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,点P是在直线x=4右侧的此抛物线上一点,过点P作PM⊥x轴,垂足为M.若以A、P、M为顶点的三角形与△OCB相似,求点P的坐标;
(3)点E是直线BC上的一点,点F是平面内的一点,若要使以点O、B、E、F为顶点的四边形是菱形,请直接写出点F的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙M与y轴的正半轴相切于点C,与x轴交于A(x1,0)、B(x2,0)两点,且x2>x1>0,抛物线y=
1
2
(x2-5x+2m)经过A、B、C三点.
(1)求m的值;
(2)求sin∠AMB的值;
(3)在图中的曲线上是否存在点P,使以P、A、C为顶点的三角形与△COA相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c(b≤0)的图象与x轴交于A,B两点,与y轴交于点C,其中点A的坐标为(-2,0);直线x=1与抛物线交于点E,与x轴交于点F,且45°≤∠FAE≤60度.
(1)用b表示点E的坐标;
(2)求实数b的取值范围;
(3)请问△BCE的面积是否有最大值?若有,求出这个最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,有长24米的篱笆,一面利用墙(墙的最大长度为10米),围成中间有一道篱笆的长方形花圃.设花圃的边AB长为x,花圃的面积为s米2
(1)请求出s与x的函数关系式.
(2)按照题中要求,所围的花圃面积能否是48米2?若能,求出的x值;若不能,请说明理由.
(参考公式:二次函数y=ax2+bx+c=0,当x=-
b
2a
时,y最大(小)值=
4ac-b2
4a

查看答案和解析>>

同步练习册答案