精英家教网 > 初中数学 > 题目详情

【题目】已知是等边三角形,

1)如图1,点在线段上从点出发沿射线的速度运动,过点交线段于点,同时点从点出发沿的延长线以的速度运动,连接.设点的运动时间为秒.

①求证:是等边三角形;

②当点不与点重合时,求证:

2)如图2,点的中点,作直线,点为直线上一点,连接,将线段绕点逆时针旋转得到,则点在直线上运动的过程中,的最小值是多少?请说明理由.

【答案】1)①证明见解析;②证明见解析;(2的最小值为4,理由见解析.

【解析】

1)①根据平行线的性质证明两个角是,可得结论;

②根据条件得,由证明,根据全等三角形的性质可得结论;

2)连接,证得,证明,可得,即点在直线上,的最小值为4

解:(1)①是等边三角形,

是等边三角形.

②如图1

是等边三角形,

是等边三角形,

2)解:连接,如图2所示.

为等边三角形,且的对称轴,

中,

在直线上,的最小值为4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某学习小组做用频率估计概率的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是(  )

实验次数

100

200

300

500

800

1000

2000

频率

0.365

0.328

0.330

0.334

0.336

0.332

0.333

A. 一副去掉大小王的普迺扑克牌洗匀后,从中任抽一张牌的花色是红桃

B. 从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率

C. 抛一枚硬币,出现正面的概率

D. 抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究:

如图1,一次函数的图象与x轴和y轴分别交于AB两点,再将△AOB沿直线CD对折,使点A与点B重合.直线CD x轴交于点C,与AB交于点D

1)求点A和点B的坐标

2)求线段OC的长度

3)如图 2,直线 ly=mx+n,经过点 A,且平行于直线 CD,已知直线 CD 的函数关系式为 ,求 mn 的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D90°,记∠OADα,∠ABOβ,当BCOA时,αβ之间的数量关系为(  )

A.αβB.αC.α+β90°D.α+β180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△CBD中,CDBDCDBDBE平分∠CBACD于点FCEBE垂足是ECE的延长线与BD交于点A

1)求证:BFAC

2)求证:BEAC的中垂线;

3)若BD2,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,ABC=90oABO的直径,OAC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB

(1)求证:PDO的切线;

(2)若AB=4,DA=DP,试求弧BD的长;

(3)如图,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,ABC中,∠ACB90°ACBC,以AC为边在同一平面内作等边ACD,连接BD,则∠ADB______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】垫球是排球队常规训练的重要项目之一,下列图表中的数据是运动员甲、乙、丙三人每人10次垫球测试的成绩,测试规则为每次连续接球10个,每垫球到位1个记1分,已知运动员甲测试成绩的中位数和众数都是7

运动员甲测试成绩统计表

测试序号

1

2

3

4

5

6

7

8

9

10

成绩(分)

7

6

8

7

6

8

6

8

1)填空:____________

2)要从他们三人中选择一位垫球较为稳定的接球能手,你认为选谁更合适?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 某公司的一批某品牌衬衣的质量抽检结果如下:

抽检件数

50

100

200

300

400

500

次品件数

0

4

16

19

24

30

1)请结合表格数据直接写出这批衬衣中任抽1件是次品的概率.

2)如果销售这批衬衣600件,至少要准备多少件正品衬衣供买到次品的顾客退换?

查看答案和解析>>

同步练习册答案