精英家教网 > 初中数学 > 题目详情
8.某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):根据以上信息解答下列问题:
学生孝敬父母情况统计表:
选项频数频率
Am0.15
B60p
Cn0.4
D480.2
(1)表中m=36,n=96,p=0.25.
(2)这次被调查的学生有多少人?并补全条形统计图.
(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?

分析 (1)根据题意可以求得本次调查的学生数,从而可以求得m、n、p的值;
(2)根据统计图中的数据可以求得本次调查的学生数并把统计图补充完整;
(3)根据统计图表格中的数据可以估计该校全体学生中选择B选项的有多少人.

解答 解:(1)由统计图可得,
本次抽查的学生有:48÷0.2=240(人),
m=240×0.15=36,n=240×0.4=96,p=60÷240=0.25,
故答案为:36,96,0.25;
(2)由统计图可得,
本次抽查的学生有:48÷0.2=240(人),
由(1)知,m=36,n=96,补全的条形统计图如右图所示;
(3)由题意可得,
该校全体学生中选择B选项的有:1600×0.25=400(人),
即该校全体学生中选择B选项的有400人.

点评 本题考查条形统计图、用样本估计总体、频数分布表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图,在等边△ABC中,点D为BC边上一点,请你用量角器,在AC边上确定点E,使AE=CD,简述你的作法,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.盒中有3个大小相同的小球,其中2个为白色,1个为红色,每次从袋中摸1个球,然后放回搅匀再摸,在摸球实验中得到下表中部分数据.
摸球次数4080120160200240280320360400
出现红色的频数142438687792109120132
出球红色的频率35%32%35%34%33%34%
(1)请将数据表补充完整;
(2)画出摸出红球频率的折线统计图;
(3)摸出一个红球的概率估计值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图所示,AB⊥l1,AC⊥l2,则点A到直线l1的距离是线段AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,将△ABC绕点C按顺时针方向旋转64°至△A′B′C,使点A′落在BC的延长线上.则∠ACB′=52度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,已知∠A=∠C,∠1与∠2互补,求证:AB∥CD.
要求:写出推理步骤和每一步的推理依据.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系中,直线y=x+3与x轴交于点B,与直线CD交于点A(-$\frac{12}{11}$,a),点D的坐标为(0,$\frac{3}{2}$),点C在x轴上
(1)求a的值;
(2)求直线CD的解析式;
(3)若点E是直线CD上一动点(不与点C重合),当△CBE∽△COD时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.点P是∠AOB的边OB上一点.
(1)过点P画OA的垂线,垂足为H(不写作法,保留作图痕迹);
(2)过点P画OB的垂线,交OA于点C(不写作法,保留作图痕迹);
(3)线段PH的长度是点P到直线OA的距离,线段CP是点C到直线OB的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形(a×b的矩形指边长分别为a,b的矩形)?
问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.
探究一:
如图①,当n=5时,可将正方形分割为五个1×5的矩形.
如图②,当n=6时,可将正方形分割为六个2×3的矩形.
如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形
如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形
如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形

探究二:
当n=10,11,12,13,14时,分别将正方形按下列方式分割:

所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n-5 )×( n-5 )的正方形和两个5×(n-5)的矩形.显然,5×5的正方形和5×(n-5)的矩形均可分割为1×5的矩形,而(n-5)×(n-5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.
探究三:
当n=15,16,17,18,19时,分别将正方形按下列方式分割:

请按照上面的方法,分别画出边长为18,19的正方形分割示意图.
所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n-10 )×(n-10)的正方形和两个10×(n-10)的矩形.显然,10×10的正方形和10×(n-10)的矩形均可分割为1x5的矩形,而(n-10)×(n-10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.
问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.
实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)

查看答案和解析>>

同步练习册答案