精英家教网 > 初中数学 > 题目详情
平面内到定点A的距离等于3cm的点的轨迹是________.

 

答案:以A点为圆心半径为3cm的圆
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

圆的有关概念:
(1)圆两种定义方式:
(a)在一个平面内线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做
圆心
圆心
.线段OA叫做
半径
半径

(b)圆是所有点到定点O的距离
等于
等于
定长r的点的集合.
(2)弦:连接圆上任意两点的
线段
线段
叫做弦.(弦不一定是直径,直径一定是弦,直径是圆中最长的弦);
(3)弧:圆上任意两点间的部分叫
(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)
(4)等弧:在同圆与等圆中,能够
完全重合
完全重合
的弧叫等弧.
(5)等圆:能够
完全重合
完全重合
的两个圆叫等圆,半径
相等
相等
的两个圆也叫等圆..

查看答案和解析>>

科目:初中数学 来源: 题型:

我们知道,如果已知一点M相对于定点O的距离和方向,那么这个点就被唯一确定了.这就是说,我们可用角度和距离来确定平面上点的相对位置.
在平面内取一个定点O,叫做极点,引一条射线OP,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向).对于平面内任一点M,用r表示线段OM的长度,θ表示从OP到OM的角度,r叫做点M的极径,θ叫做点M的极角,有序数对(r,θ)就叫做点M的极坐标,这样就在平面上建立了极坐标系.极坐标为(r,θ)的点M,可表示为M(r,θ).建立极坐标系后,给定r和θ就可以在平面内唯一确定一点M.
如图,如果点D的位置为(3,5),点A的位置为(4,0).
(1)请表示点B与点C的位置;
(2)若以O为极点,OP为极轴,写出A点、B点和C点的极坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我们知道,如果已知一点M相对于定点O的距离和方向,那么这个点就被唯一确定了.这就是说,我们可用角度和距离来确定平面上点的相对位置.
在平面内取一个定点O,叫做极点,引一条射线OP,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向).对于平面内任一点M,用r表示线段OM的长度,θ表示从OP到OM的角度,r叫做点M的极径,θ叫做点M的极角,有序数对(r,θ)就叫做点M的极坐标,这样就在平面上建立了极坐标系.极坐标为(r,θ)的点M,可表示为M(r,θ).建立极坐标系后,给定r和θ就可以在平面内唯一确定一点M.
如图,如果点D的位置为(3,5),点A的位置为(4,0).
(1)请表示点B与点C的位置;
(2)若以O为极点,OP为极轴,写出A点、B点和C点的极坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料后回答问题:

在平面直角坐标系中,已知x轴上的两点A(X1,0),B(X2,0)的距离记作,如果是平面上任意两点,我们可以通过构造直角三角形来求A、B间的距离。

如图,过A、B两点分别向x轴、y轴作垂线AM1、AN1和BM2、BN2,垂足分别记作,直线AN1与BM2交于Q点。

在Rt△ABQ中,,∵

由此得任意两点之间的距离公式:

如果某圆的圆心为(0,0),半径为r。设P(x,y)是圆上任一点,根据“圆上任一点到定点(圆心)的距离都等于定长(半径)”,我们不难得到,即:,    整理得:。我们称此式为圆心在原点,半径为r的圆的方程。

(1)直接应用平面内两点间距离公式,求点 之间的距离;

(2)如果圆心在点P(2,3),半径为3,求此圆的方程。

(3)方程是否是圆的方程?如果是,求出圆心坐标与半径。

查看答案和解析>>

同步练习册答案