A. | 3 | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 6 |
分析 首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.
解答 解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,
∵在菱形ABCD中,AB=6,∠ABC=60°,
∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,
∴△ACD是等边三角形,PA=PC,
∵M为AD中点,
∴DM=$\frac{1}{2}$AD=3,CM⊥AD,
∴CM=$\sqrt{C{D}^{2}-D{M}^{2}}$=3$\sqrt{3}$,
∴PA+PM=PC+PM=CM=3$\sqrt{3}$.
故选C.
点评 此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P的位置是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com