精英家教网 > 初中数学 > 题目详情
8.用科学记数法表示0.0000907为9.07×10-5

分析 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.

解答 解:0.0000907=9.07×10-5
故答案为:9.07×10-5

点评 本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图,抛物线y=ax2+bx+4的图象经过A(-3,0),B(5,4),与y轴交于点C.
(1)求抛物线的解析式;
(2)线段AB在第一象限内的部分上有一动点P,过点P作y轴的平行线,交抛物线于点Q,是否存在点P使四边形BPCQ的面积最大?如果存在,请求出点P的坐标及面积的最大值;如果不存在,说明理由;
(3)x轴正半轴上有一点D(1,0),线段AC上是否存在点M,使△AOM∽△ADC?如果存在,直接写出点M的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在正方形ABCD中,对角线AC、BD交于点O,点P在线段BC上(不与点B重合),E在BO上,且∠BPE=$\frac{∠BCA}{2}$,过点B作PE交PE的延长线于F,交AC于点G.

(1)当点P与点C重合时(如图1),填空△BOG≌△POE,$\frac{BF}{PE}$=$\frac{1}{2}$;
(2)当点P不与点C重合时(图2),猜想:$\frac{BF}{PE}$的值为$\frac{1}{2}$.并证明你的结论;
(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,则直接写出的值为.(用含α的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,菱形ABCD中,∠BAD=76°,AB的垂直平分线EF交AC于点F,则∠CFD的度数为(  )
A.86°B.76°C.66°D.52°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在Rt△AOB中,∠ABO=30°,BO=4,分别以OA、OB边所在的直线建立平面直角坐标系,D点为x轴正半轴上的一点,以OD为一边在第一象限内作等边△ODE.
(Ⅰ)如图①当E点恰好落在线段AB上时,求E点坐标;
(Ⅱ)若点D从原点出发沿x轴正方向移动,设点D到原点的距离为x,△ODE与△AOB重叠部分的面积为y,当E点到达△AOB的外面,且点D在点B左侧时,写出y与x的函数关系式,并写出自变量x的取值范围;
(Ⅲ)在(Ⅰ)问的条件下,将△ODE在线段OB上向右平移如图②,图中是否存在一条与线段OO′始终相等的线段?如果存在,请直接指出这条线段;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,点D在等边△ABC内,将△ABC绕点C顺时针旋转60°,得到△ACE,连接BE、DE,若∠AEB=45°,则∠DBE的度数为(  )
A.15°B.20°C.25°D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC相交于点D,E,若∠AEN=133°,则∠B的度数为70°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD、FH.
(1)试判断BD与⊙O的位置关系,并说明理由;
(2)当AB=BE=1时,求⊙O的面积;
(3)在(2)的条件下,求HG•HB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案