精英家教网 > 初中数学 > 题目详情
11.(1)问题背景:
如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点且∠EAF=
60°,探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是BE+DF=EF;

(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=$\frac{1}{2}$∠BAD,上述结论是否仍然成立,并说明理由;
(3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E、F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.

分析 (1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;
(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;
(3)连接EF,延长AE、BF相交于点C,然后与(2)同理可证.

解答 解:(1)EF=BE+DF,证明如下:
在△ABE和△ADG中,
$\left\{\begin{array}{l}{DG=BE}\\{∠B=∠ADG}\\{AB=AD}\end{array}\right.$,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=$\frac{1}{2}$∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
$\left\{\begin{array}{l}{AE=AG}\\{∠EAF=∠GAF}\\{AF=AF}\end{array}\right.$,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
故答案为 EF=BE+DF.

(2)结论EF=BE+DF仍然成立;
理由:延长FD到点G.使DG=BE.连结AG,如图2,

在△ABE和△ADG中,$\left\{\begin{array}{l}{DG=BE}\\{∠B=∠ADG}\\{AB=AD}\end{array}\right.$,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=$\frac{1}{2}$∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
$\left\{\begin{array}{l}{AE=AG}\\{∠EAF=∠GAF}\\{AF=AF}\end{array}\right.$,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;

(3)如图3,连接EF,延长AE、BF相交于点C,

∵∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,
∴∠EOF=$\frac{1}{2}$∠AOB,
又∵OA=OB,∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,
∴符合探索延伸中的条件,
∴结论EF=AE+BF成立,
即EF=2×(45+60)=210(海里).
答:此时两舰艇之间的距离是210海里.

点评 本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1),(2,1).
(1)以O点为位似中心在y轴左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;
(2)如果△OBC内部一点M的坐标为(x,y),写出B、C、M对应点B′,C′,M′坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,一艘海轮位于灯塔P的北偏东60°方向,距灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时B处距离灯塔P有多远(结果取整数).参考数值:$\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7,$\sqrt{6}$≈2.4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.以下各组线段为边不能组成三角形的是(  )
A.4,3,3B.1,5,6C.2,5,4D.5,8,4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图所示,转盘被等分成六个扇形,并在上面一次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,求:
(1)指针指向4的概率;
(2)指针指向数字是奇数的概率;
(3)指针指向数字不小于5的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.十八世纪瑞士数学家欧拉证明了简单多面体中面数(F)、顶点数(V)、棱数(E)之间存在一个有趣的关系式,被称为“欧拉公式”,请你观察如图所示几种简单多面体模型,解答下列问题:

(1)根据如图所示多面体模型,完成表格中的空格:
多面体各面形状面数(F)顶点数(V)棱数(E)
四面体三角形446
长方体长方形68x
正八面体正三角形8y12
正十二面体正五面型122030
你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F-E=2(用含V、F、E的式子表示);
(2)已知某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和六边形两种多边形拼接而成,且有18个顶点,每个顶点处都有4条棱,设该多面体外表面三角形的个数为m个,六边形的个数为n个,求m+n的值;
(3)在(2)的情况下,又已知m+2q=18,求代数式(3n-6q)2-$\frac{2}{10q-5n}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图是一个正方体的表面展开图,则原正方体中与“建”字相对的面上的字是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.某商人在一次买卖中均以180元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人(  )
A.赚24元B.赔24元C.不赚不赔D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某校七年级(一)班共有50名学生,分别参加了写作、数学、英语、篮球及摄影兴趣小组,每个学生必须参加且只能参加其中一种,请根据如图所示的扇形统计图.求:
(1)参加数学兴趣小组的人数;
(2)参加篮球和摄影小组的学生比参加数学小组的学生多几人?

查看答案和解析>>

同步练习册答案