【题目】如图,动直线()分别交x轴,抛物线和于点P,E,F,设点A,B为抛物线, 与x轴的一个交点,连结AE,BF.
(1)求点A,B的坐标.
(2)当时,判断直线AE与BF的位置关系,并说明理由.
(3)连结BE,当时,求△BEF的面积.
【答案】(1) 点A的坐标为(3,0),点B的坐标为(4,0);(2)AE∥BF.(3)(Ⅰ)2;(Ⅱ) .
【解析】试题分析:(1)把y=0分别代入y=x2-3x和y=x2-4x中,进而得出A,B点坐标;
(2)利用锐角三角函数关系得出∠PAE=∠PBF,进而得出直线AE与BF的位置关系;
(3)利用AE∥BF,得出△PAE∽△PBF,进而求出m的值,即可得出△BEF的面积.
试题解析:(1)把y=0分别代入和中,
得: ,
解得x=0或x=3;
,
解得x=0或x=4
∴点A的坐标为(3,0),点B的坐标为(4,0);
(2)直线AE与BF的位置关系是AE∥BF.
理由如下:
由题意得,点E的坐标为(m, ),
点F的坐标为(m, ).
∴tan∠PAE= ,
∴tan∠PBF= ,
∴∠PAE=∠PBF,∴AE∥BF;
(3)(Ⅰ)如图1,
∵AE∥BF,∴△PAE∽△PBF,
∴,即,解得m=2.
∴;
(Ⅱ)如图2,
∵AE∥BF,∴△PAE∽△PBF,
∴,即,解得m=.
∴S△BEF=EFPB=××=.
科目:初中数学 来源: 题型:
【题目】已知是一段圆弧上的两点,且在直线的同侧,分别过这两点作的垂线,垂足为
是上一动点,连接,且.
(1)如图①,如果,且,求的长;
(2)如图②,若点恰为这段圆弧的圆心,则线段之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当分别在直线两侧且,而其余条件
不变时,线段之间又有怎样的等量关系?请直接写出结论,不必证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线将这10个正方形分成面积相等的两部分,则该直线的解析式为( )
A. y=xB. y=xC. y=xD. y=x
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°)
(1)当α=0°时,连接DE,则∠CDE= °,CD= ;
(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明;
(3)若m=10,n=8,当α=∠ACB时,求线段BD的长;
(4)若m=6,n=4,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100 m,此时自B处测得建筑物顶部的仰部角是45°.已知测角仪的高度是1.5 m,请你计算出该建筑物的高度.(取≈1.732,结果精确到1 m)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】结合数轴与绝对值的知识回答下列问题:
(1)探究:
①数轴上表示5和2的两点之间的距离是___.
②数轴上表示2和6的两点之间的距离是___.
③数轴上表示4和3的两点之间的距离是___.
(2)归纳:
一般的,数轴上表示数m和数n的两点之间的距离等于|mn|.
(3)应用:
①如果表示数a和3的两点之间的距离是7,则可记为:|a3|=7,那么a=___.
②若数轴上表示数a的点位于4与3之间,求|a+4|+|a3|的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com