分析 观察原式的各项发现$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),利用此公式对各项进行变形,然后提取$\frac{1}{2}$,合并抵消后即可求出值.
解答 解:$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{99×101}$
=$\frac{1}{2}$×(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{99}$-$\frac{1}{101}$)
=$\frac{1}{2}$×(1-$\frac{1}{101}$)
=$\frac{1}{2}$×$\frac{99}{101}$
=$\frac{99}{202}$.
点评 此题考查了有理数的混合运算,利用的方法是裂项相消法,培养了学生的数感、符号感,灵活运用$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$)是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | AB=DE,∠B=∠E | B. | AB=DE,AC=DC | C. | BC=EC,∠BCE=∠ACD | D. | BC=EC,AC=DC |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com