精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程mx2﹣(m1x10

1)求证:这个一元二次方程总有两个实数根;

2)若二次函数ymx2﹣(m1x1有最大值0,则m的值为   

3)若x1x2是原方程的两根,且2x1x2+1,求m的值.

【答案】1)证明见解析;(2-1;(3mm

【解析】

1)先计算判别式得到=(m+12,根据非负数的性质即可得到≥0,于是利用判别式的意义即可得到结论;

2)根据二次函数的性质得m00,然后解方程即可;

3)先根据根与系数的关系得到x1+x2x1x2=﹣,再把2x1x2+1变形得到2x1x2+1,则2(﹣+1,然后解关于m的方程即可.

1)证明:m≠0

=(m124m×(﹣1

=(m+12

∵(m+12≥0,即≥0

∴这个一元二次方程总有两个实数根;

2)解:∵二次函数ymx2﹣(m1x1有最大值0

m00

m=﹣1

故答案为﹣1

3)解:x1+x2x1x2=﹣

2x1x2+1

2x1x2+1

2(﹣+1

整理得m2+m10

mm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点P的坐标为(),点Q的坐标为(),且,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点PQ相关矩形.下图为点PQ 相关矩形的示意图.

1)已知点A的坐标为(10).

若点B的坐标为(31)求点AB相关矩形的面积;

C在直线x=3上,若点AC相关矩形为正方形,求直线AC的表达式;

2O的半径为,点M的坐标为(m3).若在O上存在一点N,使得点MN相关矩形为正方形,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:

①当x3时,y0;②3a+b0;③﹣1a;④4ac﹣b28a;

其中正确的结论是(

A.①③④ B.①②③ C.①②④ D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读:已知△ABC,用直尺与圆规,在直线BC上方的平面内作一点M(不与点A重合),使∠BMC=∠BAC(如图1).

小明利用同弧所对的圆周角相等这条性质解决了这个问题,下面是他的作图过程:

第一步:分别作ABBC的中垂线(虚线部分),设交点为O

第二步:以O为圆心,OA为半径画圆(即△ABC的外接圆)

第三步:在弦BC上方的弧上(异于A点)取一点M,连结MBMC,则∠BMC=∠BAC.(如图2

思考:如图2,在矩形ABCD中,BC6CD10ECD上一点,DE2

1)请利用小明上面操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P.点P满足:∠BPC=∠BEC,且PBPC.(要求:用直尺与圆规作出点P,保留作图痕迹.)

2)求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线ykx4k+4与抛物线yx2x交于AB两点.

1)直线总经过定点,请直接写出该定点的坐标;

2)点P在抛物线上,当k=﹣时,解决下列问题:

在直线AB下方的抛物线上求点P,使得△PAB的面积等于20

连接OAOBOP,作PCx轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是( )

A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件

B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是,则甲的射击成绩较稳定

C.明天降雨的概率为,表示明天有半天都在降雨

D.了解一批电视机的使用寿命,适合用普查的方式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不透明的袋子中装有4个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、4

(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率

(2)随机摸出两个小球,直接写出“两次取出的球标号和等于4”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形ABCD中,ADBCABDC8,∠B60°,BC12,连接AC

1)求tanACB的值;

2)若MN分别是ABDC的中点,连接MN,求线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:

操作发现:

在等腰△ABC中,AB=AC,分别以ABAC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点FEG⊥AC于点GMBC的中点,连接MDME,则下列结论正确的是 (填序号即可)

①AF=AG=AB②MD=ME整个图形是轴对称图形;④∠DAB=∠DMB

数学思考:

在任意△ABC中,分别以ABAC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,MBC的中点,连接MDME,则MDME具有怎样的数量和位置关系?请给出证明过程;

类比探索:

在任意△ABC中,仍分别以ABAC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,MBC的中点,连接MDME,试判断△MED的形状.

答:

查看答案和解析>>

同步练习册答案