精英家教网 > 初中数学 > 题目详情
(2007•安徽)探索n×n的正方形钉子板上(n是钉子板每边上的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:
当n=2时,钉子板上所连不同线段的长度值只有1与,所以不同长度值的线段只有2种,若用S表示不同长度值的线段种数,则S=2;
当n=3时,钉子板上所连不同线段的长度值只有1,,2,,2五种,比n=2时增加了3种,即S=2+3=5.
(1)观察图形,填写下表:
(2)写出(n-1)×(n-1)和n×n的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可)
(3)对n×n的钉子板,写出用n表示S的代数式.

钉子数(n)S值
 2×2 2
 3×3 2+3
 4×4 2+3+( )
 5×5 ( )

【答案】分析:(1)钉子数为2×2时,共有不同的线段2条;
钉子数为3×3时,共有不同的线段2+3条;
钉子数为4×4时,共有不同的线段2+3+4条;
那么钉子数为5×5时,共有不同的线段2+3+4+5条.
(2)钉子数为(n-1)×(n-1)时,共有不同的线段2+3+4+5+…+(n-1)条;钉子数为n×n时,共有不同的线段2+3+4+5+…+(n-1)+n条相减后发现不同长度的线段种数增加了n种.
(3)钉子数为n×n时,共有不同的线段应从2开始加,加到n.
解答:解:(1)4,2+3+4+5(或14);
(2)类似以下答案均给满分:
(i)n×n的钉子板比(n-1)×(n-1)的钉子板中不同长度的线段种数增加了n种;
(ii)分别用a,b表示n×n与(n-1)×(n-1)的钉子板中不同长度的线段种数,则a=b+n;
(3)S=2+3+4+…+n=×(n-1)=
点评:解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的以及与第一个图形的相互联系,探寻其规律.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2007•镇江)探索、研究:下图是按照一定的规律画出的一列“树型”图,下表的n表示“树型”图的序号,an表示第n个“树型”图中“树枝”的个数.
图:
表:
 n 1
 an 115 
(1)根据“图”、“表”可以归纳出an关于n的关系式为______.
若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(an,an+1)都在直线l1上.
(2)设直线l2:y=-x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=(x>0)经过点M,且与直线l2相交于另一点N.
①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2
②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.
③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省绍兴市绍兴县柯岩中学数学中考模拟试卷(解析版) 题型:解答题

(2007•镇江)探索、研究:下图是按照一定的规律画出的一列“树型”图,下表的n表示“树型”图的序号,an表示第n个“树型”图中“树枝”的个数.
图:
表:
 n 1
 an 115 
(1)根据“图”、“表”可以归纳出an关于n的关系式为______.
若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(an,an+1)都在直线l1上.
(2)设直线l2:y=-x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=(x>0)经过点M,且与直线l2相交于另一点N.
①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2
②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.
③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年江苏省镇江市中考数学试卷(解析版) 题型:解答题

(2007•镇江)探索、研究:下图是按照一定的规律画出的一列“树型”图,下表的n表示“树型”图的序号,an表示第n个“树型”图中“树枝”的个数.
图:
表:
 n 1
 an 115 
(1)根据“图”、“表”可以归纳出an关于n的关系式为______.
若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(an,an+1)都在直线l1上.
(2)设直线l2:y=-x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=(x>0)经过点M,且与直线l2相交于另一点N.
①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2
②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.
③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年安徽省中考数学试卷(解析版) 题型:解答题

(2007•安徽)探索n×n的正方形钉子板上(n是钉子板每边上的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:
当n=2时,钉子板上所连不同线段的长度值只有1与,所以不同长度值的线段只有2种,若用S表示不同长度值的线段种数,则S=2;
当n=3时,钉子板上所连不同线段的长度值只有1,,2,,2五种,比n=2时增加了3种,即S=2+3=5.
(1)观察图形,填写下表:
(2)写出(n-1)×(n-1)和n×n的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可)
(3)对n×n的钉子板,写出用n表示S的代数式.

钉子数(n)S值
 2×2 2
 3×3 2+3
 4×4 2+3+( )
 5×5 ( )

查看答案和解析>>

同步练习册答案