精英家教网 > 初中数学 > 题目详情
如图,正方形OAPB、等腰直角三角形ADF的顶点A,D,B在坐标轴上,点P,F在函数y=
9
x
(x>0)
的图象上,则点F的坐标为(  )
A.(
3
5
-3
2
3
5
+3
2
)
B.(
8+2
7
2
8-2
7
2
)
C.(
3
5
+3
2
3
5
-3
2
)
D.(
8-2
7
2
8+2
7
2
)

∵OAPB是正方形,∴点P的横纵坐标相等,
且点P在函数y=
9
x
上,
∴点P的坐标为(3,3)
设F点的坐标为(x,y)
∵△ADF是等腰直角三角形,
∴y=x-3,
将其代入函数y=
9
x
中,
得x=
3+3
5
2
,y=
3
5
-3
2

∴点F的坐标为(
3+3
5
2
3
5
-3
2
).
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1,这条曲线是函数y=
1
2x
的图象在第一限内的一个分支,点P是这条曲线的任意一点,它的坐标是(a,b),由点P向x轴、y轴所作的垂线PM、PN(点M、N为垂足)分别与直线AB相交于点E和F.
(1)求△OEF的面积(a,b的代数式表示);
(2)△AOF与△BOE是否一定相似?如果一定相似,请证明;如果不一定相似,请说明理由;
(3)当点P在曲线上移动时,△OEF随之变动,指出在△OEF的三个内角中,是否有大小始终保持不变的角?若有,请求出其大小;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系:t=
k
v
,其图象为如图所示的一段曲线且端点为A(40,1)和B(m,0.5).
(1)求k和m的值;
(2)若行驶速度不得超过60km/h,则汽车通过该路段最少需要多少时间?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m),AB⊥x轴于B,Rt△AOB面积为2,若直线AC经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-
3
2
).
(1)反比例函数的解析式为______,m=______,n=______;
(2)求直线AC的解析式;
(3)在y轴上是否存在一点P,使△PAO为等腰三角形?若存在,请求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).
(1)m为何值时,△OAB面积最大?最大值是多少?
(2)如图2,在(1)的条件下,函数y=
k
x
(k>0)
的图象与直线AB相交于C、D两点,若S△OCA=
1
8
S△OCD
,求k的值.
(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=
k
x
经过正方形AOBC对角线的支点,半径为(4-2
2
)的圆内切于△ABC,求k的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:等腰△OAB在直角坐标系中的位置如图,点A坐标为(-3
3
,3),点B坐标为(-6,0).
(1)若将△OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数y=
6
3
x
的图象上,求a的值;
(2)若△OAB绕点O按逆时针方向旋转α度(0<α<360).
①当α=30°时,点B恰好落在反比例函数y=
k
x
的图象上,求k的值;
②问点A、B能否同时落在①中的反比例函数的图象上?若能,直接写出α的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△P1OA1、△P2A1A2是等腰直角三角形,点P1、P2在函数y=
4
x
(x>0)
的图象上,斜边OA1、A1A2都在x轴上,则点A2的坐标是(  )
A.(2
2
-2
,0)
B.(2
2
+2
,0)
C.(4
2
,0)
D.(2
2
,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,D是反比例函数y=
k
x
(k<0)
的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=-x+m与y=-
3
3
x+2
的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为______.

查看答案和解析>>

同步练习册答案