【题目】如图,△ABC是等边三角形,D、E分别是BC和CB延长线上的点,且,连接AD、AE,BM、CN分别是△ABE和△ACD的高线,垂足分别为M、N, BG、CH分别是∠ABE和∠ACD的平分线,分别交AE、AD于点G、H.
证明:(1)△ABE∽△DCA;
(2)sin∠MBG=sin∠NCH.
【答案】(1)见解析;(2)见解析.
【解析】
(1)由两组对边成比例且夹角相等易证△ABE∽△DCA;
(2)由△ABE∽△DCA可得∠E=∠CAD,由互余关系可得∠EBM=∠ACN,再根据角平分线得到∠EBG=∠ACH,角度作差可得∠MBG=∠NCH,即可得证.
证明:(1)∵△ABC是等边三角形
∴∠ABC=∠ACB=60°
∴∠ABE=∠DCA=120°
又∵
∴△ABE∽△DCA
(2)∵BM、CN分别是△ABE和△ACD的高线,
即BM⊥AE,CN⊥AD
∴∠EBM+∠E=90°,∠ACN+∠CAD=90°,
∵△ABE∽△DCA
∴∠E=∠CAD
∴∠EBM=∠ACN
又∵BG平分∠ABE,CH平分∠ACD,且∠ABE=∠ACD=120°
∴∠EBG=∠ACH=60°
∴∠EBG-∠EBM=∠ACH-∠ACN,即∠MBG=∠NCH
∴sin∠MBG=sin∠NCH
科目:初中数学 来源: 题型:
【题目】如图甲,,,,垂足分别为,且三个垂足在同一直线上.
(1)证明:;
(2)已知地物线与轴交于点,顶点为,如图乙所示,若是抛物线上异于的点,使得,求点坐标(提示:可结合第(1)小题的思路解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品。下表是活动进行中的一组统计数据:
(1)计算并完成表格:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“铅笔”的频率m/n | 0.68 | 0.74 | △ | 0.69 | 0.705 | △ |
(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1°)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两条抛物线与的两个交点、都在轴上,抛物线的顶点为.
(1)求抛物线的解析式;
(2)在轴正半轴上有一点,当时,求的面积;
(3)判断在轴上是否存在点,使点绕点顺时针旋转,得到点恰好落在抛物线上?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦尺,弓形高寸,(注:1尺=10寸)问这块圆柱形木材的直径是( )
A.13寸B.6.5寸C.20寸D.26寸
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践:
问题情境:在矩形ABCD中,点E为BC边的中点,将△ABE沿直线AE翻折,使点B与点F重合,直线AF交直线CD于点G.
特例探究 实验小组的同学发现:
(1)如图1,当AB=BC时,AG=BC+CG,请你证明该小组发现的结论;
(2)当AB=BC=4时,求CG的长;
延伸拓展:(3)实知小组的同学在实验小组的启发下,进一步探究了当AB∶BC=∶2时,线段AG,BC,CG之间的数量关系,请你直接写出实知小组的结论:___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,点P是线段AD上任意一点,点Q为BC上一点,且AP=CQ.
(1)求证:BP=DQ;
(2)若AB=4,且当PD=5时四边形PBQD为菱形.求AD为多少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com