精英家教网 > 初中数学 > 题目详情
3.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则$\widehat{AC}$的长为2π.

分析 连接OA、OC,根据圆内接四边形的性质求出∠D,根据圆周角定理求出∠AOC,利用弧长公式计算即可.

解答 解:连接OA、OC,
∵四边形ABCD是⊙O的内接四边形,
∴∠D=180°-∠B=45°,
∴∠AOC=90°,
∴$\widehat{AC}$的长=$\frac{90π×4}{180}$=2π,
故答案为:2π.

点评 本题考查的是圆内接四边形的性质、弧长的计算,掌握圆内接四边形的对角互补是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.计算题:
(1)-18+6+7-5
(2)(-2)3×(1-$\frac{1}{4}$)-(2-5)
(3)-$\frac{3}{4}$[-32×(-$\frac{2}{3}$)2-2].

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.不等式组$\left\{\begin{array}{l}x+1<2\\-2x<2\end{array}\right.$的解集为-1<x<1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.阅读下列材料,完成相应学习任务:
                                                        四点共圆的条件
    我们知道,过任意一个三角形的三个顶点能作一个圆,过任意一个四边形的四个顶点能作一个圆吗?小明经过实践探究发现:过对角互补的四边形的四个顶点能作一个圆,下面是小明运用反证法证明上述命题的过程:
已知:在四边形ABCD中,∠B+∠D=180°.
求证:过点A、B、C、D可作一个圆.
证明:如图(1),假设过点A、B、C、D四点不能作一个圆,过A、B、C三点作圆,若点D在圆外,设AD与圆相交于点E,连接CE,则∠B+∠AEC=180°,而已知∠B+∠D=180°,所以∠AEC=∠D,而∠AEC是△CED的外角,∠AEC>∠D,出现矛盾,故假设不成立,因此点D在过A、B、C三点的圆上.
    如图(2)假设过点A、B、C、D四点不能作一个圆,过A、B、C三点作圆,若点D在圆内,设AD的延长线与圆相交于点E,连接CE,则∠B+∠AEC=180°,而已知∠B+∠ADCA=180°,所以∠AEC=∠ADC,而∠ADC是△CED的外角,∠ADC>∠AEC,出现矛盾,故假设不成立,因此点D在过A、B、C三点的圆上.
    因此得到四点共圆的条件:过对角互补的四边形的四个顶点能作一个圆.
学习任务:
(1)材料中划线部分结论的依据是圆的内接四边形对角互补.
(2)证明过程中主要体现了下列哪种数学思想:D(填字母代号即可)
            A、函数思想   B、方程思想   C、数形结合思想   D、分类讨论思想
(3)如图(3),在四边形ABCD中,∠ABC=∠ADC=90°,∠CAD=16°.AD=BD,则求∠ADB的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,若∠DAE=∠E,∠B=∠D,那么AB∥DC吗?请在下面的解答过程中填空或在括号内填写理由.
解:理由如下:
∵∠DAE=∠E,(已知)
∴AD∥BE,(内错角相等,两直线平行)
∴∠D=∠DCE.(两直线平行,内错角相等)
又∵∠B=∠D,(已知)
∴∠B=∠DCE.( 等量代换)
∴AB∥DC,(同位角相等,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,AB为⊙O的直径,弦CD⊥AB,点E为垂足,点F为$\widehat{BC}$的中点,连接DA,DF,DF交AB于点G.

(1)如图1,求证:∠AGD=∠ADG;
(2)如图2,连接AF交CE于点H,连接HG,求证:CH=HG;
(3)如图3,在(2)的条件下,过点O作OP⊥AD,点P为垂足,若OP=BG,DG=4,求HG长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.因式分解:16a3-16a2+4a=4a(2a-1)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知方程x-2=2x+1的解与方程k(x-2)=$\frac{x+1}{2}$的解相同,则k的值是(  )
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.2D.-2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.将抛物线y=-x2+1向上平移2个单位,得到的抛物线表达式为(  )
A.y=-(x+2)2B.y=-(x-2)2C.y=-x2-1D.y=-x2+3

查看答案和解析>>

同步练习册答案