精英家教网 > 初中数学 > 题目详情
如图,?ABCD的顶点A、B的坐标分别是A(-1,0),B(0,-2),顶点C、D在双曲线y=
k
x
上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k=______.
如图,过C、D两点作x轴的垂线,垂足为F、G,DG交BC于M点,过C点作CH⊥DG,垂足为H,
∵ABCD是平行四边形,
∴∠ABC=∠ADC,
∵BODG,
∴∠OBC=∠GDE,
∴∠HDC=∠ABO,
∴△CDH≌△ABO(AAS),
∴CH=AO=1,DH=OB=2,设C(m+1,n),D(m,n+2),
则(m+1)n=m(n+2)=k,
解得n=2m,则D的坐标是(m,2m+2),
设直线AD解析式为y=ax+b,将A、D两点坐标代入得
-a+b=0①
ma+b=2m+2②

由①得:a=b,代入②得:mb+b=2m+2,
即b(m+1)=2(m+1),解得b=2,
a=2
b=2

∴y=2x+2,E(0,2),BE=4,
∴S△ABE=
1
2
×BE×AO=2,
∵S四边形BCDE=5S△ABE=5×
1
2
×4×1=10,
∵S四边形BCDE=S△ABE+S四边形BEDM=10,
即2+4×m=10,
解得m=2,
∴n=2m=4,
∴k=(m+1)n=3×4=12.
故答案为:12.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图所示,P1(x1,y1)、P2(x2,y2),…P10(x10,y10)在函数y=
16
x
(x>0)的图象上,△OP1A1,△P2A1A2,△P3A2A3…△P10A9A10都是等腰直角三角形,斜边OA1,A1A2…A9A10,都在x轴上,则y1+y2+…+y10=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点P在双曲线y=
k
x
(k≠0)上,点P′(1,2)与点P关于y轴对称,则此双曲线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且点P(-1,-2)为双曲线上的一点,过P作PA垂直x轴于点A:
(1)写出正比例函数和反比例函数的关系式;
(2)若点Q为直线MO上一动点(不与点M、O重合),过点Q作QB⊥y轴于点B,是否存在点Q,使△OBQ与△OAP面积相等?如果存在,请求出点Q的坐标;如果不存在,请说明理由;
(3)在(2)的条件下,在平面内找一点C,使以O、P、C、Q为顶点的四边形为平行四边形,请直接写出C点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点O是坐标原点,正比例函数y=kx的图象与双曲线y=-
2
x
交于点A,且点A的横坐标为-
2

(1)求k的值.
(2)将直线y=kx向上平移4个单位得到直线BC,直线BC分别交x轴、y轴于点B、C,如点D在直线BC上,在平面直角坐标系中求一点P,使以O、B、D、P为顶点的四边形是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=-2x+b的图象与反比例函数y=
k
x
的图象交于点A(1,6)、B(3,2)两点.
(1)求b的值;
(2)求反比例函数的解析式;
(3)根据图象填空,当反比例函数小于一次函数的值时,x的取值范围是______;
(4)作AD⊥y轴,BC⊥x轴,垂足分别是D、C,五边形ABCOD的面积是14,求△ABO的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

当x>0时,函数y=-
2
x
的图象在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=-2x-2与双曲线y=
k
x
在第二象限内的交点为A,与两坐标轴分别交于B、C两点,AD⊥x轴于点D,如果△ADB与△COB全等,求k的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点M是反比例函数y=
1
x
在第一象限内图象上的点,作MB⊥x轴于B.过点M的第一条直线交y轴于点A1,交反比例函数图象于点C1,且A1C1=
1
2
A1M,△A1C1B的面积记为S1;过点M的第二条直线交y轴于点A2,交反比例函数图象于点C2,且A2C2=
1
4
A2M,△A2C2B的面积记为S2;过点M的第三条直线交y轴于点A3,交反比例函数图象于点C3,且A3C3=
1
8
A3M,△A3C3B的面积记为S3;以此类推…;则S1+S2+S3+…+S8=______.

查看答案和解析>>

同步练习册答案