精英家教网 > 初中数学 > 题目详情
15.如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,交y轴于C点,其中B点坐标为(3,0),C点坐标为(0,3),且图象对称轴为直线x=1.
(1)求此二次函数的关系式;
(2)P为二次函数y=ax2+bx+c在x轴下方的图象上一点,且S△ABP=S△ABC,求P点的坐标.

分析 (1)将B、C的坐标和对称轴方程代入抛物线的解析式中,即可求得待定系数的值,可得此二次函数的关系式;
(2)根据等底等高的三角形的面积相等,可得P的纵坐标与C的纵坐标互为相反数,根据自变量与函数值的对应关系,可得答案.

解答 解:(1)根据题意,得
$\left\{\begin{array}{l}{9a+3b+c=0}\\{c=3}\\{-\frac{b}{2a}=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=-1}\\{b=2}\\{c=3}\end{array}\right.$.
故二次函数的表达式为y=-x2+2x+3.
(2)由S△ABP=S△ABC,得
yP+yC=0,得yP=-3,
当y=-3时,-x2+2x+3=-3,
解得x1=1-$\sqrt{7}$,x2=1+$\sqrt{7}$.
故P点的坐标为(1-$\sqrt{7}$,-3)或(1+$\sqrt{7}$,-3).

点评 本题考查了二次函数综合题,(1)利用待定系数法求函数解析式;(2)利用等底等高的三角形的面积相等得出P的纵坐标与C的纵坐标互为相反数是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.请将“同一个角的补角相等”改写成“如果…,那么…”的形式如果两个角是同一个角的补角,那么这两个角相等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.一种乘饮料的圆柱形杯子,测得内部底面半径为2.5cm,高为12cm,吸管最放进杯里(如图),杯口外面露出部分的吸管长为4.6cm,问吸管为多长?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.先化简,再求值:(m+2-$\frac{5}{m-2}$)×$\frac{2m-4}{m-3}$,其中m=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,点P是线段AB上的一点,点M、N分别是线段AP、PB的中点.

(1)如图1,若点P是线段AB的中点,且MP=4cm,求线段AB的长;
(2)如图2,若点P是线段AB上的任一点,且AB=12cm,求线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某班学生分两组参加某项活动,甲组有26人,乙组有32人,后来由于活动需要,从甲组抽调了部分学生去乙组,结果乙组的人数是甲组人数的2倍还多1人.从甲组抽调了多少学生去乙组?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知一组数据:7,5,9,5,14,下列说法不正确的是(  )
A.平均数是8B.极差是9C.众数是5D.中位数是9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在?ABCD中,对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM=DN且BA∥DN.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在Rt△ABC中,∠C=90°,点D在BC上,点E在AB上,且DE∥AC,AE=5,DE=2,DC=3,动点P从点A出发,沿边AC以每秒2个单位长的速度向终点C运动,同时动点F从点C出发,在线段CD上以每秒1个单位长的速度向终点D运动,设运动时间为t秒.
(1)线段AC的长=6;
(2)当△PCF与△EDF相似时,求t的值.

查看答案和解析>>

同步练习册答案