分析 连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.
解答 解:如图,连接BF,
在菱形ABCD中,∠BAC=$\frac{1}{2}$∠BAD=$\frac{1}{2}$×80°=40°,∠BCF=∠DCF,BC=DC,
∠ABC=180°-∠BAD=180°-80°=100°,
∵EF是线段AB的垂直平分线,
∴AF=BF,∠ABF=∠BAC=40°,
∴∠CBF=∠ABC-∠ABF=100°-40°=60°,
∵在△BCF和△DCF中,
$\left\{\begin{array}{l}{BC=DC}\\{∠BCF=∠DCF}\\{CF=CF}\end{array}\right.$,
∴△BCF≌△DCF(SAS),
∴∠CDF=∠CBF=60°,
故答案为:60°.
点评 本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{9}$=±3 | B. | $\sqrt{5}$-$\sqrt{4}$=1 | C. | $\sqrt{(3-π)^{2}}$=3-π | D. | $\root{3}{{2}^{3}}$=2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com