精英家教网 > 初中数学 > 题目详情
如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.

(1)求作此残片所在的圆(不写作法,保留作图痕迹);
(2)已知:AB=16,CD=4.求(1)中所作圆的半径.
(1)作图见解析;(2)10.

试题分析:(1)、由垂径定理知,垂直于弦的直径是弦的中垂线,故作AC,BC的中垂线交于点O,则点O是弧ACB所在圆的圆心;
(2)、在Rt△OAD中,由勾股定理可求得半径OA的长.
试题解析:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.

(2)连接OA,设OA=x,AD=8,OD=x-4

则根据勾股定理列方程:
x2=82+(x-4)2
解得:x=10.
答:圆的半径为10.
考点: 确定圆的条件.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE=ED,延长DB到点F,使DB到点F,使FB=BD,连接AF.

⑴△BDE∽△FDA;
⑵试判断直线AF与⊙O的位置关系,并给出证明。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,弦CD⊥AB于H.点G在⊙O上,过点G作直线EF,交CD延长线于点E,交AB的延长线于点F.连接AG交CD于K,且KE=GE.

(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若AC∥EF,,FB=1,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.

(1)求b的值和点D的坐标;
(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;
(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.

(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF,OD,OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在标有刻度的直线上,从点A开始,

以AB=1为直径画半圆,记为第1个半圆;
以BC=2为直径画半圆,记为第2个半圆;
以CD=4为直径画半圆,记为第3个半圆;
以DE=8为直径画半圆,记为第4个半圆.……,
按此规律,连续画半圆,则第4个半圆的面积是第3个半圆面积的     倍。第个半圆的面积为      .(结果保留

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC是⊙O的内接三角形,O为圆心,OD⊥AB,垂足为D,OE⊥AC,垂足为E,若DE=3,则BC=        

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

.已知扇形的圆心角为120°,弧长等于一个半径为5cm的圆的周长,则扇形面积为_______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

挂钟分针的长10cm,经过45分钟,它的针尖转过的弧长是              cm.

查看答案和解析>>

同步练习册答案