精英家教网 > 初中数学 > 题目详情
已知直线y=-
3
x+
3
与x轴交于点A,与y轴交于点B,C是x轴上一点,如果∠ABC=∠ACB,
求:(1)点C的坐标;
(2)图象经过A、B、C三点的二次函数的解析式.
(1)设点C的坐标是(x,0),根据题意得
当x=0时,y=
3

当y=0时,x=1;
∴A点坐标是(1,0),B点坐标是(0,
3
),
∴(1-0)2+(0-
3
2=(x-1)2+02
解得x=3或-1,
∴C点坐标是(3,0)或(-1,0);

(2)设所求二次函数的解析式是y=ax2+bx+c,
把(1,0)、(0,
3
)、(3,0)代入函数得
0=a+b+c
3
=c
0=9a+3b+c

解得
a=
3
3
b=-
4
3
3
c=
3

∴所求函数解析式是y=
3
3
x2-
4
3
3
x+
3

把(1,0)、(0,
3
)、(-1,0)代入函数得
a+b+c=0
c=
3
a-b+c=0

解得
a=-
3
b=0
c=
3

∴所求函数解析式是y=-
3
x2+
3

故所求的二次函数的解析式是y=
3
3
x2-
4
3
3
x+
3
或y=-
3
x2+
3

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

音乐喷泉的某一个喷水口,喷出的一束水流形状是抛物线,在这束水流所在平面建立平面直角坐标系,以水面与此面的相交线为x轴,以喷水管所在的铅垂线为y轴,喷出的水流抛物线的解析式为:y=-x2+bx+2.但控制进水速度,可改变喷出的水流达到的最大高度,及落在水面的落点距喷水管的水平距离.
(1)喷出的水流抛物线与抛物线y=ax2的形状相同,则a=______;
(2)落在水面的落点距喷水管的水平距离为2个单位长时,求水流抛物线的解析式;
(3)求出(2)中的抛物线的顶点坐标和对称轴;
(4)对于水流抛物线y=-x2+bx+2.当b=b1时,落在水面的落点坐标为M(m,0),当b=b2时,落在水面的落点坐标为N(n,0),点M与点N都在x轴的正半轴,且点M在点N的右边,试比较b1与b2的大小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy内,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C.把直线y=-x-3沿y轴翻折后恰好经过B、C两点.
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,在坐标轴上是否存在这样的点F,使得∠DFB=∠DCB?若存在,求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=-x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.
(1)求二次函数的解析式;
(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;
(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某市举行钓鱼比赛,如图,选手甲钓到了一条大鱼,鱼竿被拉弯近似可看作以A为最高点的一条抛物线,鱼线AB长6m,鱼隐约在水面了,估计鱼离鱼竿支点有8m,此时鱼竿鱼线呈一个平面,且与水平面夹脚α恰好为60°,以鱼竿支点为原点,则鱼竿所在抛物线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

暑假期间,北关中学对网球场进行了翻修,在水平地面点A处新增一网球发射器向空中发射网球,网球飞行线路是一条抛物线(如图所示),在地面上落点为B.有同学在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内,已知AB=4m,AC=3m,网球飞行最大高度OM=5m,圆柱形桶的直径为0.5m,高为0.3m(网球的体积和圆柱形桶的厚度忽略不计),以M点为顶点,抛物线对称轴为y轴,水平地面为x轴建立平面直角坐标系.
(1)请求出抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?
(3)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx(a>0)与双曲线y=
k
x
相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,连结AB交y轴于点E,且S△BOE=
2
3
S△AOB(O为坐标原点).
(1)求此抛物线的函数关系式;
(2)过点A作直线平行于x轴交抛物线于另一点C.问在y轴上是否存在点P,使△POC与△OBE相似,若存在,求出点P的坐标;若不存在,请简要说明理由;
(3)抛物线与x轴的负半轴交于点D,过点B作直线ly轴,点Q在直线l上运动,且点Q的纵坐标为t,试探索:当S△AOB<S△QOD<S△BOC时,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,从10米的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在平面与墙面垂直),如果抛物线的最高点M距离1米,离地面
40
3
米,试求水流落在点B距墙的距离OB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,∠ACB=90°,点A的坐标为(0,2),点B(-3,1)在抛物线y=ax2+ax-2上,点C在x轴上.
(1)求a的值;
(2)求点C的坐标;
(3)若△ABC是等腰直角三角形
①如图1,将△ABC绕顶点A逆时针方向旋转β°(0<β<180°)得到△AB′C′,当点C′(2,1)恰好落在该抛物线上,请你通过计算说明点B′也在该抛物线上.
②如图2,设抛物线与y轴的交点为D、P、Q两点同时从D点出发,点P沿折线D→C→B运动到点B,点Q沿抛物线(在第二、三象限的部分)运动到点B,若P、Q两点的运动速度相同,请问谁先到达点B,为什么?

查看答案和解析>>

同步练习册答案