分析 如图1,连接FE、FC,构建全等三角形△ABF≌△CBF(SAS),则易证∠BAF=∠2,FA=FC;根据垂直平分线的性质、等量代换可知FE=FA,∠1=∠BAF,则∠5=∠6.然后由四边形内角和是360°、三角形内角和定理求得∠5+∠6=∠3+∠4,则∠5=∠4,即∠EAF=∠ABD.
解答 解:如图1,连接FE、FC.
∵点F在线段EC的垂直平分线上,
∴FE=FC,
∴∠1=∠2.
∵△ABD和△CBD关于直线BD对称(点A的对称点是点C),
∴AB=CB,∠4=∠3,
在△ABF与△CBF中,
$\left\{\begin{array}{l}{AB=CB}\\{∠4=∠3}\\{BF=BF}\end{array}\right.$,
∴△ABF≌△CBF(SAS),
∴∠BAF=∠2,FA=FC,
∴FE=FA,∠1=∠BAF,
∴∠5=∠6.
∵∠1+∠BEF=180°,
∴∠BAF+∠BEF=180°
∵∠BAF+∠BEF+∠AFE+∠ABE=360°,
∴∠AFE+∠ABE=180°.
又∵∠AFE+∠5+∠6=180°,
∴∠5+∠6=∠3+∠4,
∴∠5=∠4,即∠EAF=∠ABD.
点评 本题考查了垂直平分线的性质、全等三角形的性质与判定,解决本题的关键是证明△ABF≌△CBF.
科目:初中数学 来源: 题型:选择题
A. | 1.93×1011 | B. | 0.193×1011 | C. | 19.4×1010 | D. | 1.94×1010 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 90° | B. | 100° | C. | 108° | D. | 120° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com