精英家教网 > 初中数学 > 题目详情

解答题

在图1和图2中,每个小正方形的边长都是1个单位,我们把每个小正方形的顶点称为“格点”,以格点为顶点的三角形叫做“格点三角形”.

  

(1)

将图1中的格点△ABC,先向右平移3单位,再向上平移2单位,得到△,请你在图1中画出△

(2)

在图2中画出一个与格点△相似(相似比不等于1)的格点三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

解答题:
(1)设互为补角的两个角的差为60°,求较小角的余角.
(2)设一个角的补角是这个角的余角的5倍,求这个角的度数.
(3)如图,∠1=∠2,∠EMB=55°,试求∠DNF的度数.
精英家教网
(4)如图,△ABC三个顶点分别表示三个小区,AB,BC,AC是连接三个小区的已有自来水管道,某工程队现在要△ABC在内部(包括边上)建一个自来水公司M,M到AB,BC,AC的距离和计为L,已知AB=4,BC=5,AC=6,问自来水供应M在哪个位置,工程对才有最大的经济效益(即L最小)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

几何解答题
(1)如图,延长线段AB到C,使BC=
12
AB,D为AC的中点,DC=2,求AB的长.
(2)如图,将一副直角三角尺的直角顶点C叠放在一起.
①如图1,若CE恰好是∠ACD的角平分线,请直接回答此时CD是否是∠ECB的角平分线?
②如图2,若∠ECD=α,CD在∠BCE的内部,请你猜想∠ACE与∠DCB是否相等?并简述理由;
③在②的条件下,请问∠ECD与∠ACB的和是多少?并简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.
精英家教网
材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=
 
AC(用含α的三角函数表示).
精英家教网
材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).
精英家教网
编写试题选取的材料是
 
(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm2),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.

查看答案和解析>>

科目:初中数学 来源:2006年中考数学模拟试题 题型:059

解答题

如图:把一个等腰直角三角形ABC沿斜边上的高线CD(裁剪线)剪一刀,从这个三角形中剪下一部分,与剩下部分能拼成一个平行四边形ABCD(见示意图a)注意:以下探究过程中有画图要求的,工具不限,不必写画法和证明.

探究一:(1)想一想:判断四边形ABCD是平行四边形的依据是________.

(2)做一做:按上述的裁剪方法,请你拼一个与图a位置或形状不同的平行四边形,并在图b中画出示意图.

探究二:在等腰直角三角形ABC中,请你找出其它的裁剪线,把分割成的两部分拼出不同类型的特殊四边形.

(1)试一试:你能拼得所有不同类型的特殊四边形有________,它们的裁剪线分别是________.

(2)画一画:请在图c中画出一个你拼得的特殊四边形示意图.

查看答案和解析>>

同步练习册答案