精英家教网 > 初中数学 > 题目详情
4.如图1,矩形ABCD中,AB=7cm,AD=4cm,点E为AD上一定点,F为AD延长线上一点,且DF=acm,点P从A点出发,沿AB边向点B以2cm/s的速度运动,运动到B点停止,连结PE,设点P运动的时间为ts,△PAE的面积为ycm2,当0≤t≤1时,△PAE的面积y(cm2)关于时间t(s)的函数图象如图2所示,连结PF,交CD于点H.
(1)t的取值范围为0≤t≤3.5,AE=1cm;
(2)如图3,将△HDF沿线段DF进行翻折,与CD的延长线交于点M,连结AM,当a为何值时,四边形PAMH为菱形?
(3)在(2)的条件下求出点P的运动时间t.

分析 (1)根据AB的长以及点P的移动速度,可以确定t的范围;根据题意可知,y=$\frac{1}{2}$×2t×AE,由图2可知,当t=0.5时,y=0.5,进而得出0.5=$\frac{1}{2}$×2×0.5×AE,即可求出AE.
(2)根据菱形的性质以及轴对称的性质,即可证明∠MAD=∠MFD=30°,最后根据等腰三角形的性质,即可解决问题.
(3)令PA=x,则PF=2x,根据勾股定理可得,PF2=PA2+AF2,即可得出方程(2x)2=x2+82,求得x的值即可得到点P的运动时间t.

解答 解:(1)∵AB=7,而7÷2=3.5,
∴0≤t≤3.5,
由题意可知,y=$\frac{1}{2}$×2t×AE,
由图2可知,当t=0.5时,y=0.5,
∴0.5=$\frac{1}{2}$×2×0.5×AE,
∴AE=1,
故答案分别为:0≤t≤3.5,1;

(2)如图3,∵四边形AMHP是菱形,
∴AM=MH=2DM,AM∥PF,
∵∠ADM=90°,DM=$\frac{1}{2}$AM,
∴∠MAD=30°,
∴∠PFA=MFA=∠MAD=30°,
∴MA=MF,
∵MD⊥AF,
∴AD=DF=4,
∴a=4.

(3)当a=4cm时,FA=AD+DF=8cm,
令PA=x,则PF=2x,
根据勾股定理可得,PF2=PA2+AF2
即(2x)2=x2+82
解得x=$\frac{{8\sqrt{3}}}{3}$,(负值已舍去)
∴P的运动时间为$\frac{{8\sqrt{3}}}{3}$÷2=$\frac{4}{3}\sqrt{3}$秒.

点评 本题属于四边形综合题,主要考查了矩形的性质,菱形的性质,一次函数的应用以及勾股定理的运用,解题的关键是掌握:菱形的对角线互相垂直平分.解题时注意方程思想的运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.已知O点为坐标原点,抛物线y1=ax2+bx+c(a≠0)与y轴交于点C,且O,C两点间的距离为3.
(1)求点C的坐标;
(2)抛物线y1=ax2+bx+c(a≠0)与x轴交于点A(x1,0),B(x2,0),x1?x2<0,|x1|+|x2|=4.点A,C在直线y2=-3x+t上.
①求该抛物线的顶点坐标;
②将抛物线y1=ax2+bx+c(a≠0)向左平移n(n>0)个单位,记平移后y随x的增大而增大的部分为P,直线y2=-3x+t向下平移n个单位,当平移后的直线与P有公共点,求2n2-5n的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:$\sqrt{5}$($\sqrt{5}$+$\frac{1}{\sqrt{5}}$)+$\root{3}{-64}$-|-$\sqrt{81}$|-$\sqrt{1\frac{9}{16}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列结论中:①若a=b,则$\sqrt{a}$=$\sqrt{b}$,②在同一平面内,若a⊥b,b∥c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;④|$\sqrt{3}$-2|=2-$\sqrt{3}$,正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图1,已知:AB∥CD,点E,F分别在AB,CD上,且OE⊥OF.
(1)求证:∠1+∠2=90°;
(2)如图2,分别在OE,CD上取点G,H,使FO平分∠CFG,EO平分∠AEH,求证:FG∥EH.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知一次函数y=2x+4
(1)求图象与x轴的交点A的坐标,与y轴交点B的坐标;
(2)在(1)的条件下,求出△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b的图象和反比例函数y=$\frac{m}{x}$的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)直接写出一次函数的值小于反比例函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.为了对中小学进行传统文化教育,上级主管部门开展了“送戏下乡”活动,某九年一贯制学校为了了解本校1600名学生对“送戏下乡”的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘制了条形统计图(图1)和扇形统计图(图2).
(1)如果把“特别关注”、“一般关注”、“偶尔关注”都统计成关注,那么全校关注本次“送戏下乡”的学生大约有多少名?
(2)在这次调查中,四年级共有甲、乙、丙、丁四人“特别关注”本次“送戏下乡”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.在平面直角坐标系中,反比例函数y=$-\frac{3}{x}$图象的两支分别在二、四象限.

查看答案和解析>>

同步练习册答案