精英家教网 > 初中数学 > 题目详情
(2012•遵义)为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.
(1)根据图象,阶梯电价方案分为三个档次,填写下表:
 档次  第一档  第二档  第三档
 每月用电量x(度)  0<x≤140
140<x≤230
140<x≤230
x>230
x>230
(2)小明家某月用电120度,需交电费
54
54
元;
(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;
(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.
分析:(1)利用函数图象可以得出,阶梯电价方案分为三个档次,利用横坐标可得出:第二档,第三档中x的取值范围;
(2)根据第一档范围是:0<x≤140,利用图象上点的坐标得出解析式,进而得出x=120时,求出y的值;
(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c,将(140,63),(230,108)代入得出即可;
(4)分别求出第二、三档每度电的费用,进而得出m的值即可.
解答:解:(1)利用函数图象可以得出,阶梯电价方案分为三个档次,利用横坐标可得出:
第二档:140<x≤230,第三档x>230;

(2)根据第一档范围是:0<x≤140,
根据图象上点的坐标得出:设解析式为:y=kx,将(140,63)代入得出:k=
63
140
=0.45,
故y=0.45x,
当x=120,y=0.45×120=54(元),
故答案为:54;

(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c,
将(140,63),(230,108)代入得出:
140a+c=63
230a+c=108

解得:
a=
1
2
c=-7

则第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=
1
2
x-7(140<x≤230);

(4)根据图象可得出:用电230度,需要付费108元,用电140度,需要付费63元,
故,108-63=45(元),230-140=90(度),
45÷90=0.5(元),
则第二档电费为0.5元/度;
∵小刚家某月用电290度,交电费153元,
290-230=60(度),153-108=45(元),
45÷60=0.75(元),
m=0.75-0.5=0.25,
答:m的值为0.25.
点评:此题主要考查了一次函数的应用以及待定系数法求一次函数解析式,利用图象获取正确信息是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•遵义)如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.
(1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;
(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•遵义)为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,
3
≈1.73,精确到个位)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•遵义)如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a-1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•遵义)如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•遵义)一个等腰三角形的两条边分别为4cm和8cm,则这个三角形的周长为
20cm
20cm

查看答案和解析>>

同步练习册答案