【题目】(探索发现)
如图①,是一张直角三角形纸片,,小明想从中剪出一个以为内角且面积最大的矩形,经过多次操作发现,当沿着中位线、剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为_____________.
(拓展应用)
如图②,在中,,边上的高,矩形的顶点、分别在边、上,顶点、在边上,则矩形面积的最大值为_________.(用含的代数式表示)
(灵活应用)
如图③,有一块“缺角矩形”,,,,,小明从中剪出了一个面积最大的矩形(为所剪出矩形的内角),求该矩形的面积.
(实际应用)
如图④,现有一块四边形的木板余料,经测量,,,且,,木匠徐师傅从这块余料中裁出了顶点、在边上且面积最大的矩形,求该矩形的面积.
【答案】【探索发现】;【拓展应用】;【灵活应用】720;【实际应用】2205cm2.
【解析】
(1)【探索发现】:由中位线知EF=BC、ED=AB、由 可得结论;
(2)【拓展应用】:设PN=b,证明△APN∽△ABC,表示PQ的长,根据矩形的面积公式得:S=bPQ=+bh,根据二次函数求最值即可;
(3)【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH=20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;
(4)【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB和tanC得BH和CH、EH的长,继而求得BE和CE的长,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.
(1)【探索发现】:设EF=x,ED=y,
∵EF、ED为△ABC中位线,
∴ED∥AB,EF∥BC,EF=BC,ED=AB,
∴AB=2ED=2y,BC=2EF=2x,
又∠B=90°,
∴四边形FEDB是矩形,
则 ,
故答案为:;
(2)【拓展应用】:设PN=b,
∵PN∥BC,
∴△APN∽△ABC,
∴,
∵BC=a,BC边上的高AD=h,
∴ ,PQ=,
∴S=bPQ=+bh,
∴S的最大值为: ;
则矩形PQMN面积的最大值为;
故答案为:;
(3)【灵活应用】:如图1,延长BA、DE交于点F
由题意知四边形ABCH是矩形,
∵AB=32,BC=40,AE=20,CD=16,
∴EH=20、DH=16,
∴AE=EH、CD=DH,
在△AEF和△HED中,
∵ ,
∴△AEF≌△HED(ASA),
∴AF=DH=16,
同理△CDG≌△HDE,
∴CG=HE=20,
∴BI==24,
∵BI=24<32,
∴中位线IK的两端点在线段AB和DE上,
过点K作KL⊥BC于点L,
由【探索发现】知矩形的最大面积为×BGBF=×(40+20)×(32+16)=720,
答:该矩形的面积为720;
(4)【实际应用】:如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,
∵tanB=,
设EH=4x,BH=3x,
∵tanC=2=,
∴CH=2x,
∵BC=BH+CH=105=3x+2x,x=21,
∴BH=63,CH=42,EH=84,
由勾股定理得:BE=,
∵AB=60,
∴AE=45,
∴BE的中点Q在线段AB上,
∵CD=70,
∴CE的中点P在线段CD上,
∴中位线PQ的两端点在线段AB、CD上,
由【拓展应用】知,矩形PQMN的最大面积为BCEH=×105×84=2205cm2,
答:该矩形的面积为2205cm2.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=,点A的纵坐标为4.
(1)求该反比例函数和一次函数的解析式;
(2)连接AO,求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;
(2)若的长为π,求“回旋角”∠CPD的度数;
(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13,直接写出AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).
(1)求直线AB的解析式;
(2)直线AB上是否存在点C,使△BOC的面积为2?若存在,求出点C的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明想用镜子测量一棵松树的高度,但因树旁有一条河,不能测量镜子与树之间的距离,于是他两次利用镜子,如图所示,第一次他把镜子放在C点,人在F点时正好在镜子中看到树尖A;第二次把镜子放在D点,人在G点正好看到树尖A.已知小明的眼睛距离地面1.70m,量得CD=12m,CF=1.8m,DH=3.8m.请你求出松树的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P(x,y),请用“列表法”或“树状图法”求点P(x,y)在函数y=-x+5图象上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知的顶点,,,若将先沿轴进行第一次对称变换,所得图形沿轴进行第二次对称变换,轴对称变换的对称轴遵循轴、轴、轴、轴…的规律进行,则经过第2018次变换后,顶点坐标为()
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是反比例函数的图象,点,分别在图象的两支上,以为对角线作矩形且轴.
(1)当线段过原点时,分别写出与,与的一个等量关系式;
(2)当、两点在直线上时,求矩形的周长;
(3)当时,探究与的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x为整数,总分100分),绘制了如下尚不完整的统计图表.
组别 | 成绩分组(单位:分) | 频数 |
A | 50≤x<60 | 40 |
B | 60≤x<70 | a |
C | 70≤x<80 | 90 |
D | 80≤x<90 | b |
E | 90≤x<100 | 100 |
合计 | c |
根据以上信息解答下列问题:
(1)统计表中a= ,b= ,c= ;
(2)扇形统计图中,m的值为 ,“E”所对应的圆心角的度数是 (度);
(3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com