精英家教网 > 初中数学 > 题目详情
精英家教网如图,直线y=kx+k(k≠0)与双曲线y=
m-5x
在第一象限内相交于点M,与x轴交于点A.
(1)求m的取值范围和点A的坐标;
(2)若点B的坐标为(3,0),AM=5,S△ABM=8,求双曲线的函数表达式.
分析:(1)根据反比例函数图象的性质,当比例系数大于0时,函数图象位于第一三象限,列出不等式求解即可;令纵坐标y等于0求出x的值,也就可以得到点A的坐标;
(2)过点M作MC⊥AB于C,根据点A、B的坐标求出AB的长度,再根据S△ABM=8求出MC的长度,然后在Rt△ACM中利用勾股定理求出AC的长度,从而得到OC的长度,也就得到点M的坐标,然后代入反比例函数解析式求出m的值,解析式可得.
解答:精英家教网解:(1)∵y=
m-5
x
在第一象限内,
∴m-5>0,
解得m>5,
∵直线y=kx+k与x轴相交于点A,
∴令y=0,
则kx+k=0,
即 k(x+1)=0,
∵k≠0,
∴x+1=0,
解得x=-1,
∴点A的坐标(-1,0);

(2)过点M作MC⊥AB于C,
∵点A的坐标(-1,0)点B的坐标为(3,0),
∴AB=4,AO=1,
S△ABM=
1
2
×AB×MC=
1
2
×4×MC=8,
∴MC=4,
又∵AM=5,
∴AC=3,OA=1,
∴OC=2,
∴点M的坐标(2,4),
把M(2,4)代入y=
m-5
x

4=
m-5
2

解得m=13,
∴y=
8
x
点评:本题考查了反比例函数图象的性质,一次函数图象的性质,以及勾股定理,待定系数法求函数解析式,综合性较强,但难度不大,审清题意是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线y=kx+b经过A(1,2)和B(-2,0)两点,则不等式组-x+3≥kx+b>0的解集为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线y=kx+b经过点A(0,3),B(-2,0),则k的值为(  )
A、3
B、
3
2
C、
2
3
D、-
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,直线y=kx+b和y=mx都经过点A(-1,-2),则不等式mx<kx+b的解集为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线y=kx+b经过A(2,1),B(-1,-2)两点,则不等式
1
2
x>kx+b>-2的解集为(  )
A、x<2
B、x>-1
C、x<1或x>2
D、-1<x<2

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,直线y=kx-1经过点(2,1),则不等式0≤x<2kx+2的解集为
x≥0

查看答案和解析>>

同步练习册答案