精英家教网 > 初中数学 > 题目详情

【题目】如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.

(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;

(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;

(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.

【答案】(1PM=PNPM⊥PN,理由见解析;(2)理由见解析;(3PM=kPN;理由见解析

【解析】试题分析:(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3PM=kPN,由已知条件可证明△BCD∽△ACE,所以可得BD=kAE,因为点PMN分别为ADABDE的中点,所以PM=BDPN=AE,进而可证明PM=kPN

试题解析:(1PM=PNPM⊥PN,理由如下:

∵△ACB△ECD是等腰直角三角形, ∴AC=BCEC=CD∠ACB=∠ECD=90°

△ACE△BCD∴△ACE≌△BCDSAS), ∴AE=BD∠EAC=∠CBD

MN分别是斜边ABDE的中点,点PAD的中点, ∴PM=BDPN=AE

∴PM=PM∵∠NPD=∠EAC∠MPN=∠BDC∠EAC+∠BDC=90°∴∠MPA+∠NPC=90°

∴∠MPN=90°, 即PM⊥PN

2∵△ACB△ECD是等腰直角三角形, ∴AC=BCEC=CD∠ACB=∠ECD=90°

∴∠ACB+∠BCE=∠ECD+∠BCE∴∠ACE=∠BCD∴△ACE≌△BCD∴AE=BD∠CAE=∠CBD

∵∠AOC=∠BOE∠CAE=∠CBD∴∠BHO=∠ACO=90°

PMN分别为ADABDE的中点, ∴PM=BDPM∥BDPN=AEPN∥AE

∴PM=PN∴∠MGE+∠BHA=180°∴∠MGE=90°∴∠MPN=90°∴PM⊥PN

3PM=kPN

∵△ACB△ECD是直角三角形, ∴∠ACB=∠ECD=90°∴∠ACB+∠BCE=∠ECD+∠BCE

∴∠ACE=∠BCD∵BC=kACCD=kCE=k∴△BCD∽△ACE∴BD=kAE

PMN分别为ADABDE的中点, ∴PM=BDPN=AE∴PM=kPN

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列整式乘法运算中,正确的是(

A.(x-y)(y+ x)=x2-y2 B.(a+3)2=a2+9

C.(a+b)(-a-b)=a2-b2 D.(x-y)2=x2-y2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】P(-1,-2)到x轴的距离是(

A. 1B. 2C. 1D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与AOB全等点P与点O不重合,则点P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题6分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.

(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;

(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低,若该果园每棵果树产果y千克,增种果树x棵,它们之间的函数关系如图所示.

(1)求y与x之间的函数解析式;

(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?

(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列语句中不是命题的是(
A.对顶角相等
B.过A,B两点作直线
C.两点之间线段最短
D.内错角相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2

(1)求y与x之间的函数关系式;

(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知(x+3)2 - x 1x的值可能是___________

查看答案和解析>>

同步练习册答案