精英家教网 > 初中数学 > 题目详情
在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图1)
(1)在图1中画图探究:
①当P1为射线CD上任意一点(P1不与C重合)时,连接EP1;绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB=
4
3
,AE=1,在①的条件下,设CP1=x,S△P1FG1=y,求y与x之间的函数关系式,并写出自变量x的取值范围.
(1)①直线FG1与直线CD的位置关系为互相垂直.
证明:如图1,设直线FG1与直线CD的交点为H.
∵线段EC、EP1分别绕点E逆时针旋转90°依次得到线段EF、EG1
∴∠P1EG1=∠CEF=90°,EG1=EP1,EF=EC.
∵∠G1EF=90°-∠P1EF,∠P1EC=90°-∠P1EF,
∴∠G1EF=∠P1EC.
∴△G1EF≌△P1EC.
∴∠G1FE=∠P1CE.
∵EC⊥CD,
∴∠P1CE=90°,
∴∠G1FE=90度.
∴∠EFH=90度.
∴∠FHC=90度.
∴FG1⊥CD.
②按题目要求所画图形见图1,
∵FG1⊥CD,
∴直线G1G2与直线CD的位置关系为互相垂直.

(2)∵四边形ABCD是平行四边形,
∴∠B=∠ADC.
∵AD=6,AE=1,tanB=
4
3

∴DE=5,tan∠EDC=tanB=
4
3

可得CE=4.
由(1)可得四边形EFHC为正方形.
∴CH=CE=4.
①如图2,当P1点在线段CH的延长线上时,
∵FG1=CP1=x,P1H=x-4,
∴S△P1FG1=
1
2
×FG1×P1H=
x(x-4)
2

∴y=
1
2
x2-2x(x>4).
②如图3,当P1点在线段CH上(不与C、H两点重合)时,
∵FG1=CP1=x,P1H=4-x,
∴S△P1FG1=
1
2
×FG1×P1H=
x(4-x)
2

∴y=-
1
2
x2+2x(0<x<4).
③当P1点与H点重合时,即x=4时,△P1FG1不存在.
综上所述,y与x之间的函数关系式及自变量x的取值范围是y=
1
2
x2-2x(x>4)或y=-
1
2
x2+2x(0<x<4).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y1=a(x+2)2-3y2=
1
2
(x-3)2+1
交于点A(1,3)过点A作x轴的平行线,分别交两条抛物线于点B、C,则以下结论:
①无论x取何值,y2的值总是正数;②a=
2
3
;③当x=0时,y2-y1=4;④2AB=3AC;
其中,结论正确的是______(填写序号即可)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,二次函数y=ax2+bx的图象经过点A(-5,0)和点B,其中点B在第一象限,且OA=OB,cot∠BAO=2.
(1)求点B的坐标;
(2)求二次函数的解析式;
(3)过点B作直线BC平行于x轴,直线BC与二次函数图象的另一个交点为C,联结AC,如果点P在x轴上,且△ABC和△PAB相似,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,拱桥最高点C到AB的距离为9m,AB=36m,D,E为拱桥底部的两点,且DEAB,点E到直线AB的距离为7m,则DE的长为______m.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=ax2+4ax+t与x轴的一个交点为A(-1,0),另一个交点为B.
(1)求点B的坐标;
(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;
(3)已知直线y=k与抛物线不相交,且抛物线上任意一点到这条直线的距离与这一点到点F(-2,-
3
4
a
)的距离相等,则k的值为______.(直接写答案)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=a(x+1)2+m的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C,顶点为M,直线MC的解析式为y=kx-3,且直线MC与x轴交于点N,sin∠BCO=
10
10

(1)求直线MC及二次函数的解析式;
(2)在二次函数的图象上是否存在点P(异于点C),使以点P、N、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)和B(-2,0),连接AB.
(1)现将△AOB绕点A按逆时针方向旋转90°得到△AO1B1,请画出△AO1B1,并直接写出点B1、O1的坐标(注:不要求证明);
(2)求经过B、A、O1三点的抛物线对应的函数关系式,并画出抛物线的略图.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某种商品在30天内每件销售价格P(元)与时间t(天)的函数关系用如图所示的两条线段表示,该商品在30天内日销售量Q(件)与时间t(天)之间的函数关系是Q=-t+40(0<t≤30,t是整数).
(1)求该商品每件的销售价格P与时间t的函数关系式,并写出自变量t的取值范围;
(2)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

选做题:(A)已知四边形ABCD中,ADBC,对角线AC、BD交于点O,∠OBC=∠OCB,并且______,求证:四边形ABCD是______形.(要求在已知条件中的横线上补上一个条件______,在求证中的横线上添上该四边形的形状,然后画出图形,予以证明,证明时要用上所有条件)
(B)某市市委、市府2001年提出“工业立市”的口号,积极招商引资,财政收入稳步增长,各年度财政收入如下表:
年份2001200220032004
财政收入
单位(亿元)
1010.51214.5
按这种增长趋势,请你算一算2006年该市的财政收入是多少亿元.

查看答案和解析>>

同步练习册答案