【题目】在平面直角坐标系中,点A的坐标是(3a﹣5,a+1)
(1)若点A在y轴上,求a的值及点A的坐标.
(2)若点A到x轴的距离与到y轴的距离相等;求a的值及点A的坐标.
【答案】(1)A的坐标为:(0,);(2)a=3,则点A(4,4)或a=﹣2,则点A(﹣11,﹣1).
【解析】
试题分析:(1)根据点在y轴上,横坐标为0,求出a的值,即可解答;
(2)根据点A到x轴的距离与到y轴的距离相等,得到|3a﹣5|=|a+1|,即可解答.
解:(1)∵点A在y轴上,
∴3a﹣5=0,
解得:a=,
a+1=,
点A的坐标为:(0,);
(2)∵点A到x轴的距离与到y轴的距离相等,
∴|3a﹣5|=|a+1|,
①3a﹣5=a+1,解得:a=3,则点A(4,4);
②3a﹣5=﹣(a+1),解得:a=﹣1.5,则点A(﹣9.5,0.5);
③﹣(3a﹣5)=a+1解得:a=﹣1.5,则点A(﹣9.5,0.5);
④﹣(3a﹣5)=﹣(a+1),解得:a=﹣2,则点A(﹣11,﹣1);
所以a=3,则点A(4,4)或a=﹣2,则点A(﹣11,﹣1).
科目:初中数学 来源: 题型:
【题目】如图1,正方形ABCD的边长为4厘米,E为AD边的中点,F为AB边上一点,动点P从点B出发,沿B→C→D→E,向终点E以每秒a厘米的速度运动,设运动时间为t秒,△PBF的面积记为S. S与t的部分函数图象如图2所示,已知点M(1,)、N(5,6)在S与t的函数图象上.
(1)求线段BF的长及a的值;
(2)写出S与t的函数关系式,并补全该函数图象;
(3)当t为多少时,△PBF的面积S为4.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面图形上的任意两点P,Q,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点P′,Q′,保持P P′= Q Q′,我们把这种对应点连线相等的变换称为“同步变换”。对于三种变换: ①平移、②旋转、③轴对称,
其中一定是“同步变换”的有______________(填序号)。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),则四边形AEPQ的周长的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC.
(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.
(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com