精英家教网 > 初中数学 > 题目详情
25、已知关于x的一元二次方程x2+3x+1-m=0.
(1)请选取一个你喜爱的m的值,使方程有两个不相等的实数根,并说明它的正确性;
(2)设x1,x2是(1)中所得方程的两个根,求x1x2+x1+x2的值.
分析:(1)选取m的值,只要使方程的判别式△>0,方程有两个不相等的实数根;
(2)利用根与系数关系即可求得两根的和与两根的积,再代入x1x2+x1+x2即可求解.
解答:解:(1)取m=4,则原方程变为:x2+3x-3=0.
∵△=9+12=21>0,
∴符合两个不相等的实数根;
(2)∵x1+x2=-3,x1x2=-3,
∴x1x2+x1+x2=-3-3=-6.
答:x1x2+x1+x2的值为-6.
点评:△>0时,一元二次方程有2个不相等的实数根.注意运用根与系数的关系使计算简便.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案