分析 (1)由在平行四边形ABCD中,AB∥DC,可得AB∥DE,又由AE∥BD,即可证得四边形 ABDE是平行四边形;
(2)由(1)易得EC=2AB,又由∠ABC=60°,可求得∠ECF=60°,然后由EF⊥BF,证得EC=2CF,即可得AB=CF,求得答案.
解答 (1)证明:如图,在?ABCD中,AB∥DC,
∵点E在CD的延长线上,
∴AB∥DE,
又∵AE∥BD,
∴四边形ABDE是平行四边形;
(2)解:在?ABCD中,AB=DC,在?ABDE中,AB=ED,
∴EC=2AB
∵AB∥DC,∠ABC=60°.
∴∠ECF=∠ABC=60°.
∵EF⊥BF,
∴∠CEF=90°-∠ECF=30°,
∴EC=2CF,
∴AB=$\frac{1}{2}$EC=CF=$\sqrt{6}$.
点评 此题考查了平行四边形的判定与性质以及含30°的直角三角形的性质.注意利用有两组对边分别平行的四边形是平行四边形定理的应用是解此题的关键.
科目:初中数学 来源: 题型:选择题
A. | ①②⑤ | B. | ①②③⑤ | C. | ②③④⑤ | D. | ①②③④⑤ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com