精英家教网 > 初中数学 > 题目详情
如图,AD是△ABC的中线,P是AD的中点,延长BP交AC于点F.
(1)试说明PB=3PF;
(2)若AC的长为12,求AF的长.
分析:(1)过D作DE∥AC,然后利用“角边角”证明△PDE和△PAF全等,根据全等三角形对应边相等可得PE=PF,再根据平行线分线段成比例定理列式求出BE=EF,然后求解即可;
(2)根据全等三角形对应边相等可得DE=AF,然后求出AF、FC的关系,再求解即可.
解答:解:(1)过D作DE∥AC,交BF于点E,
∴∠PDE=∠PAF,
∵P是AD的中点,
∴AP=DP,
∵在△PDE和△PAF中,
∠PDE=∠PAF
AP=DP
∠APF=∠DPE

∴△PDE≌△PAF(ASA),
∴PE=PF,
由DE∥AC,得到
BD
DC
=
BE
EF

∵AD是△ABC的中线,
∴BD=DC,
∴BE=EF=2PF,
∴BP=3PF;

(2)∵△PDE≌△PAF,
∴DE=AF,
DE
FC
=
AF
FC
=
1
2

∴AF=
1
1+2
AC=
1
3
×12=4.
点评:本题考查了平行线分线段成比例定理,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键,熟记平行线分线段成比例定理也很重要.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案