精英家教网 > 初中数学 > 题目详情
①解不等式组
②解分式方程:
【答案】分析:①分别求得每个不等式的解集,找到其公共解集即可;
②观察可得最简公分母是(6x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
解答:解:①解第一个不等式得x-3x+6≤4,
-2x≤-2,
x≥1
解第二个不等式得1+2x>3x-3,
-x>-4,
x<4,
∴不等式组的解集为1≤x<4;

②方程两边都乘以6x-2得18x-6-2=4,
18x=12,
解得x=
经检验x=是原方程的解.
∴x=
点评:考查解不等式组及解分式方程;用到的知识点为:解不等式组应找到两个不等式的公共解集;分式方程必须验根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

先阅读理解下面的例题,再按要求解答:
例题:解一元二次不等式x2-9>0.
解:∵x2-9=(x+3)(x-3),
∴(x+3)(x-3)>0.
由有理数的乘法法则“两数相乘,同号得正”,有
(1)
x+3>0
x-3>0
(2)
x+3<0
x-3<0

解不等式组(1),得x>3,
解不等式组(2),得x<-3,
故(x+3)(x-3)>0的解集为x>3或x<-3,
即一元二次不等式x2-9>0的解集为x>3或x<-3.
问题:求分式不等式
5x+1
2x-3
<0
的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

.先阅读下面的例题,再按要求解答。(10分)

例:解一元二次不等式x2-9>0

解:∵x2-9=(x+3)(x-3)  ∴(x+3)(x-3)>0 

由有理数的乘法法则“两数相乘,同号得正”得

(1)      (2)

解不等式组(1),得x>3

解不等式组(2),得x<-3

∴(x+3)(x-3)>0的解集为x>3或x<-3

即一元二次不等式x2-9>0的解集为x>3或x<-3

问题:求分式不等式的解集

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年福建省九年级下学期第一次月考数学卷 题型:解答题

先阅读下面的例题,再按要求解答。(10分)

例:解一元二次不等式x2-9>0

解:∵x2-9=(x+3)(x-3)  ∴(x+3)(x-3)>0 

由有理数的乘法法则“两数相乘,同号得正”得

(1)      (2)

解不等式组(1),得x>3

解不等式组(2),得x<-3

∴(x+3)(x-3)>0的解集为x>3或x<-3

即一元二次不等式x2-9>0的解集为x>3或x<-3

问题:求分式不等式的解集

 

查看答案和解析>>

科目:初中数学 来源:2012届仙师中学九年级第一次月考试考试数学卷 题型:选择题

.先阅读下面的例题,再按要求解答。(10分)

例:解一元二次不等式x2-9>0

解:∵x2-9=(x+3)(x-3)  ∴(x+3)(x-3)>0 

由有理数的乘法法则“两数相乘,同号得正”得

(1)      (2)

解不等式组(1),得x>3

解不等式组(2),得x<-3

∴(x+3)(x-3)>0的解集为x>3或x<-3

即一元二次不等式x2-9>0的解集为x>3或x<-3

问题:求分式不等式的解集

 

查看答案和解析>>

科目:初中数学 来源:2012届仙师中学九年级下学期第一次月考考试数学卷 题型:选择题

.先阅读下面的例题,再按要求解答。(10分)

例:解一元二次不等式x2-9>0

解:∵x2-9=(x+3)(x-3)  ∴(x+3)(x-3)>0 

由有理数的乘法法则“两数相乘,同号得正”得

(1)      (2)

解不等式组(1),得x>3

解不等式组(2),得x<-3

∴(x+3)(x-3)>0的解集为x>3或x<-3

即一元二次不等式x2-9>0的解集为x>3或x<-3

问题:求分式不等式的解集

 

查看答案和解析>>

同步练习册答案