精英家教网 > 初中数学 > 题目详情
点A(1,m)和点B(2,n)都在双曲线y=
2
x
上,则m和n的大小关系是(  )
分析:分别把A B的坐标代入解析式,即可求出m n,即可得出答案.
解答:解:∵把A(1,m)代入y=
2
x
得:m=2,
把B(2,n)代入y=
2
x
得:n=1,
∴m>n,
故选A.
点评:本题考查了反比例函数图象上点的坐标特征,主要考查了学生的理解能力和计算能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax2+bx+3(a≠0)的图象与x轴交于点A(-1,0)和点B(3,0)两点(点A在点B的左边),与y轴交于点C.
(1)求此二次函数的解析式,并写出它的对称轴;
(2)若直线l:y=kx(k>0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出点D的坐标;若不存在,请说明理由;
(3)若直线l′:y=m与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄浦区二模)已知一次函数y=x+1的图象和二次函数y=x2+bx+c的图象都经过A、B两点,且点A在y轴上,B点的纵坐标为5.
(1)求这个二次函数的解析式;
(2)将此二次函数图象的顶点记作点P,求△ABP的面积;
(3)已知点C、D在射线AB上,且D点的横坐标比C点的横坐标大2,点E、F在这个二次函数图象上,且CE、DF与y轴平行,当CF∥ED时,求C点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1)己知抛物线y=ax2+bx+c与x轴交于点A(-1,0)和点B(3,0),与y轴正半轴交于点C,且
cos∠CAB=
10
10

(1)求抛物线的解析式;
(2)如图(2),己知点H(0,1).问在抛物线上是否存在点G,使得S△GHC=S△GHA?若存在,求出点G的坐标;若不存在,请说明理由;
(3)如图(3),抛物线上点D在x轴上的正投影为点E(2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1与y2都与x轴交于点O(0,0)和点A,y1的顶点是B(2,-1),y2的顶点是C(2,-3),P是y1上的一个动点,过P作y轴的平行线交y2于点Q,分别过P,Q作x轴的平行线,分别交y1,y2于点P′,Q′,连接P′Q′.
(1)四边形PP′Q′Q 是
形.
(2)求y1与y2关于x的函数关系式.
(3)设P点的横坐标为t(t>2且t≠4),四边形PP′Q′Q的周长为y,试求y与t的函数关系式.
(4)当四边形PP′Q′Q是正方形,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

作业宝如图,抛物线y1与y2都与x轴交于点O(0,0)和点A,y1的顶点是B(2,-1),y2的顶点是C(2,-3),P是y1上的一个动点,过P作y轴的平行线交y2于点Q,分别过P,Q作x轴的平行线,分别交y1,y2于点P′,Q′,连接P′Q′.
(1)四边形PP′Q′Q 是______形.
(2)求y1与y2关于x的函数关系式.
(3)设P点的横坐标为t(t>2且t≠4),四边形PP′Q′Q的周长为y,试求y与t的函数关系式.
(4)当四边形PP′Q′Q是正方形,请直接写出P点的坐标.

查看答案和解析>>

同步练习册答案