精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC,AD是角平分线,BE平分∠ABC交AD于点E,点O在AB上,以OB为半径的⊙O经过点E,交AB于点F
(1)求证:AD是⊙O的切线;
(2)若AC=4,∠C=30°,求 的长.

【答案】
(1)证明:

如图,连接OE,

∵OB=OE,

∴∠OBE=∠OEB,

∵BE平分∠ABC,

∴∠OBE=∠EBD,

∴∠OEB=∠EBD,

∴OE∥BD,

∵AB=AC,AD平分∠BAC,

∴AD⊥BC,

∴∠OEA=∠BDA=90°,

∴AD是⊙O的切线


(2)解:∵AB=AC=4,∠C=∠B=30°,

∴BD=2

设圆的半径为r,则BO=OE=r,AO=AC﹣OB=4﹣r,

∵OE∥BD,

= ,即 = ,解得r=8 ﹣12,

= =


【解析】(1)连接OE,利用角平分线的定义和圆的性质可得∠OBE=∠OEB=∠EBD,可证明OE∥BD,结合等腰三角形的性质可得AD⊥BD,可证得OE⊥AD,可证得AD为切线;(2)利用(1)的结论,结合条件可求得∠AOE=30°,由(1)可知OE∥BD,设半径为r,则OB=OE=r,AO=4﹣r,在Rt△ABD中,由勾股定理可求得BD,由平行线分线段成比例可得到关于r的方程,可求得圆的半径,利用弧长公式可求得
【考点精析】认真审题,首先需要了解等腰三角形的性质(等腰三角形的两个底角相等(简称:等边对等角)),还要掌握含30度角的直角三角形(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段的中点坐标为

(1)如图(1),C为线段AB中点,A点坐标为(0,4),B点坐标为(5,4),则点C的坐标为   

(2)如图(2),F为线段DE中点,D点坐标为(﹣4,﹣3),E点坐标为(1,﹣3).则点F的坐标为________

应用:

(1)如图(3),长方形ONDF的对角线相交于点M,ON,OF分别在x轴和y轴上,O为坐标原点,点D的坐标为(4,3),则点M的坐标为   

(2)在直角坐标系中A(﹣1,2),B(3,1),C(1,4)三点,另有一点DA,B,C构成平行四边形的顶点,直接写出D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=AC,A=36°,AB的中垂线DEACD,交ABE,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)BDC的周长等于AB+BC;(4)DAC中点.其中正确的命题序号是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),把△ABC平移之后得到△A′B′C′,并且C的对应点C′的坐标为(4,1).

(1)分别写出A′、B′两点的坐标;

(2)作出△ABC平移之后的图形△A′B′C′;

(3)求△A′B′C′的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AE∥BF,AC平分∠BAE,交BF于C.
(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);
(2)在(1)的图形中,找出两条相等的线段,并予以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途径C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.

(1)直接写出a,m,n的值;

(2)求出甲车与B地的距离y(千米)与甲车出发时间x(小时)的函数关系式(写出自变量x的取值范围);

(3)当两车相距120千米时,乙车行驶了多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1、l2相交于点A(2,3),直线l1与x轴交点B的坐标为(﹣1,0),直线l2与y轴交于点C,已知直线l2的解析式为y=2.5x﹣2,结合图象解答下列问题:

(1)求直线l1的解析式;

(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案