精英家教网 > 初中数学 > 题目详情

如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若AB=6,BD=3,求BC和AE的长.

(1)解:
DE与⊙O的位置关系式相切.
理由是:连接OC,
∵AE⊥CD,CF⊥AB,CE=CF,
∴∠EAC=∠CAF,
∵OA=OC,
∴∠CAF=∠OCA,
∴∠OCA=∠EAC,
∴OC∥AE,
∵AE⊥DE,
∴OC⊥DE,
∵OC为⊙O半径,
∴DE是⊙O的切线,
即DE与⊙O的位置关系式相切.

(2)解:
∵OC⊥DE,
∴∠OCD=90°,
∵AB=6,BD=3,
∴OB=3=BD,
即B为OD中点,
∴CB=OB=BD=3,
∵AB是直径,
∴∠ACB=90°,
在△ACB中,AB=6,BC=3,由勾股定理得:AC=3
在△ACB中,由三角形的面积公式得:×AC×BC=×AB×CF,
×3×3=×6×CF,
CF=
∵CE=CF,
∴CE=
在Rt△AEC中,AC=3,CE=,由勾股定理得:AE=
即AE=,BC=3.
分析:(1)求出AC平分∠EAF,推出OC∥AE,推出OC⊥DE,根据切线判定推出即可;
(2)根据直角三角形斜边上中线性质求出BC=OB=3,根据三角形面积公式求出CF,得出CE,根据勾股定理求出AE即可.
点评:本题考查了切线的性质和判定,三角形的面积,等腰三角形的性质和判定,平行线的性质和判定,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,∠CAB=30°,过点C的⊙O的切线交AB延长线于D,若OD=4
3
,那么弦AC长等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知A是半径为1的⊙O上一点,以A为圆心,AO为半径画弧交⊙O于点B、C;以C为圆心,CO为半径画弧交⊙O于点D、A.则图中阴影面积为
 
平方单位(结果取准确值).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•梁子湖区模拟)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)若点M是
AB
的中点,CM交AB于点N,AB=8,求MN•MC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•资阳)已知a、b是正实数,那么,
a+b
2
ab
是恒成立的.
(1)由(
a
-
b
)2≥0
恒成立,说明
a+b
2
ab
恒成立;
(2)填空:已知a、b、c是正实数,由
a+b
2
ab
恒成立,猜测:
a+b+c
3
3abc
3abc
也恒成立;
(3)如图,已知AB是直径,点P是弧上异于点A和点B的一点,PC⊥AB,垂足为C,AC=a,BC=b,由此图说明
a+b
2
ab
恒成立.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河池)如图,已知AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.
(1)试判断DE与⊙O的位置关系,并证明你的结论;
(2)若∠C=30°,CE=6,求⊙O的半径.

查看答案和解析>>

同步练习册答案