精英家教网 > 初中数学 > 题目详情

【题目】某次台风来袭时,一棵笔直大树树干AB(假定树干AB垂直于水平地面)被刮倾斜7°(即∠BAB′=7°)后折断倒在地上,树的顶部恰好接触到地面D处,测得∠CDA37°,AD5米,求这棵大树AB的高度.(结果保留根号)(参考数据:sin370.6cos370.8tan370.75

【答案】3+4)米.

【解析】

过点AAECD于点E,解RtAED,求出DEAE的长度,再解RtAEC,得出CEAC的长,进而可得出结论.

解:过点AAECD于点E,则∠AEC=∠AED90

∵在RtAED中,∠ADC37

cos37

DE4

sin37

AE3

RtAEC中,

∵∠CAE90﹣∠ACE906030

CEAE

AC2CE2

ABAC+CE+ED2++43+4(米).

答:这棵大树AB原来的高度是(3+4)米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)如图1,在正方形ABCD中,EAB上一点,FAD延长线上一点,且DFBE.求证:CECF

2)如图2,在正方形ABCD中,EAB上一点,GAD上一点,如果∠GCE45°,请你利用(1)的结论证明:GEBEGD

3)运用(1)(2)解答中所积累的经验和知识,完成下题:

如图3,在直角梯形ABCD中,AD∥BCBCAD),∠B90°ABBCEAB上一点,且∠DCE45°BE4DE="10," 求直角梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校王老师组织九(1)班同学开展数学活动,某天带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得电线杆顶端A的仰角为30°,在C处测得电线杆顶端A的仰角为45°,斜坡与地面成60°角,CD4m,请你根据这些数据求电线杆的高AB.(结果用根号表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+2分别与x轴,y轴交于点AB,点C是反比例函数y的图象在第一象限内一动点.过点C作直线CDAB.交x轴于点D,交AB于点E.则CEDE的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,点G是等边三角形AOB的外心,点A在第一象限,点B坐标为(40),连结OG.抛物线yaxx2+1+的顶点为P

1)直接写出点A的坐标与抛物线的对称轴;

2)连结OP,求当∠AOG2AOPa的值.

3)如图②,若抛物线开口向上,点CD分别为抛物线和线段AB上的动点,以CD为底边构造顶角为120°的等腰三角形CDE(点CDE成逆时针顺序),连结GE

①点Qx轴上,当四边形GDQO为平行四边形时,求GQ的值;

②当GE的最小值为1时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.

1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;

2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃粽子的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用ABCD表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

请根据以上信息回答:

1)将两幅不完整的图补充完整;

2)本次参加抽样调查的居民有多少人?

3)若居民区有8000人,请估计爱吃D粽的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100)作为样本进行整理,得到下列不完整的统计图表:

成绩x/

频数

频率

50x60

10

0.05

 60x70

30

0.15

 70x80

40

n

 80x90

m

0.35

 90x100

50

0.25

请根据所给信息,解答下列问题:

(1)m   n   

(2)请补全频数分布直方图;

(3)若成绩在90分以上(包括90)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:每个内角都相等的八边形叫做等角八边形.容易知道,等角八边形的内角都等于135°.下面,我们来研究它的一些性质与判定:

1)如图1,等角八边形ABCDEFGH中,连结BF

①请直接写出∠ABF+∠GFB的度数.

②求证:ABEF

③我们把ABEF称为八边形的一组正对边.由②同理可得:BCFGCDGHDEHA这三组正对边也分别平行.请模仿平行四边形性质的学习经验,用一句话概括等角八边形的这一性质.

2)如图2,等角八边形ABCDEFGH中,如果有ABEFBCFG,则其余两组正对边CDGHDEHA分别相等吗?证明你的结论.

3)如图3,八边形ABCDEFGH中,若四组正对边分别平行,则显然有∠A=∠E,∠B=∠F,∠C=∠G,∠D=∠H.请探究:该八边形至少需要已知几个内角为135°,才能保证它一定是等角八边形?

查看答案和解析>>

同步练习册答案