【题目】在一次数学课上,张老师出示了一个题目:“如图,ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE.请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:
小青:OE=OF;小何:四边形DFBE是正方形;
小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF.
这四位同学写出的结论中不正确的是( )
A. 小青 B. 小何 C. 小夏 D. 小雨
【答案】B
【解析】
根据平行四边形的性质可得OA=OC,CD∥AB,从而得∠ACE=∠CAF,可判断出小雨的结论正确,证明△EOC≌△FOA,可得OE=OF,判断出小青的结论正确,由△EOC≌△FOA继而可得出S四边形AFED=S四边形FBCE,判断出小夏的结论正确,由△EOC≌△FOA可得EC=AF,继而可得出四边形DFBE是平行四边形,从而可判断出四边形DFBE是菱形,无法判断是正方形,判断出故小何的结论错误即可.
∵四边形ABCD是平行四边形,
∴OA=OC,CD∥AB,
∴∠ACE=∠CAF,(故小雨的结论正确),
在△EOC和FOA中,
,
∴△EOC≌△FOA,
∴OE=OF(故小青的结论正确),
∴S△EOC=S△AOF,
∴S四边形AFED=S△ADC=S平行四边形ABCD,
∴S四边形AFED=S四边形FBCE,(故小夏的结论正确),
∵△EOC≌△FOA,
∴EC=AF,∵CD=AB,
∴DE=FB,DE∥FB,
∴四边形DFBE是平行四边形,
∵OD=OB,EO⊥DB,
∴ED=EB,
∴四边形DFBE是菱形,无法判断是正方形,(故小何的结论错误),
故选B.
科目:初中数学 来源: 题型:
【题目】李明同学积极响应学校号召,利用假期参加了班级组织的“研学旅行”活动,在参观某红色景区时,李明站在台阶DF上发现了对面山坡BC上有一块竖立的标语牌AB,他在台阶顶端F处测得标语牌顶点A的仰角为,标语牌底端B的仰角为,如图,已知台阶高EF为3米,山坡坡面BC的长为25米,山坡BC的坡度为1:,求标语牌AB的高度结果精确到米,参考数据,,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD(四边相等、四内角相等)中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=4,BE=DF=3,则EF的平方为( )
A.2B.C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒1cm的速度沿折线A﹣B﹣C﹣A运动,设运动时间为t(t>0)秒.
(1)AC= cm;
(2)若点P恰好在∠ABC的角平分线上,求此时t的值;
(3)在运动过程中,当t为何值时,△ACP为等腰三角形(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,剪两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )
A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE∥BC
(1)求证:DE=CE;
(2)若∠A=90°,S△BCD=26,BC=13,求AD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为平面直角坐标系的原点,在长方形OABC中,OC∥AB,OA∥BC,两边OC、OA分别在x轴和y轴上,且点B(a,b)满足:+(2b+6)2=0.
(1)求点B的坐标;
(2)如图1,若过点B的直线BP与长方形OABC的边交于点P,且将长方形OABC的面积分为1:3两部分,求点P的坐标;
(3)如图2,M为线段OC一点,且∠ABM=∠AMB,N是x轴负半轴上一动点,∠MAN的平分线AD交BM的延长线于点D,在点N运动的过程中,试判断∠ANM与∠D的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F.
(1)求证:△PFA∽△ABE;
(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com